GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – SUMMER • 2014

Subject Code: 130002 Date: 02-06-2 Subject Name: Advanced Engineering Mathematics			ate: 02-06-2014	
Ti	me: 0	2.30 pm - 05.30 pm 7	Fotal Marks: 70	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Solve $(x+1)\frac{dy}{dx} - y = e^{3x} (x+1)^2$		03
	(b)	$[(x+1)e^{x} - e^{y}] dx - xe^{y} dy = 0, y(1) = 0.$		04
	(c)	Determine the series solution for the differential equation $y'' + y =$	= 0 about $x_0 = 0$.	07
Q.2	(a)	(i) Solve $(D^2 + 5D + 6)y = e^x$.		03
		(ii) Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by method of variation of pa	rameter.	04
	(b)	Solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of v	ariable.	07
	(b)	OR I^2		07
	(U)	Solve in series the equation $\frac{d^2 y}{dx^2} + xy = 0$.		07
Q.3	(a)	Find the Fourier series for $f(x) = e^{-x}$, $0 < x < 2\pi$.		07
	(b)	Find the Fourier series expansion for $f(x)$, if $f(x) = \begin{cases} -\pi, \\ x \end{cases}$	$-\pi < x < 0$ $x < \pi$	07
		Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.		
Q.3	(a)	Find the Fourier series expansions of (i) $f(x) = x$, $-\pi < x < \pi$ $f(x + 2\pi) = f(x)$		07
		(ii) $f(x) = x^2 - l < x < l$.		
	(b)	Express $f(x) = x$ as a		07
		 (i) half range sine series in 0 < x <2 (ii) half range cosine series in 0 < x < 2. 		
Q.4	(a)	(1) Prove that $L(\sinh at) = \frac{a}{s^2 - a^2}$ for $s > a $.		03
		(2) Find the Laplace transforms of (i) sin2tsin3t (ii) e^{-3t} (2 co	$\cos 5t - 3\sin 5t$)	04
	(b)	Evaluate : (i) $L^{-1}\{\ln(1+\frac{w^2}{s^2})\}$ (ii) $L^{-1}\{\frac{5s+3}{(s-1)(s^2+2s+5)}\}$		07
		OR		
Q.4	(a)	Apply convolution theorem to evaluate $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$		03
	(b)	Use Laplace transform method to solve $y'' + a^2 y = k \sin a$	at	04

1

(c) If
$$L(f(t)) = \overline{f(s)}$$
 and if $L\left\{\frac{f(t)}{t}\right\}$ exists then prove that
 $L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \overline{f}(s) \, ds.$ Also find $L\left\{\frac{\sin 2t}{t}\right\}$

Q.5 (a) (1) Form partial differential equation of $f(x+y+z, x^2+y^2+z^2) = 0$, where 03 f is an arbitrary function.

(2) Solve
$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$
 04

(b) (1) Solve p(1+q) = qz(2) Solve $p^2 + q^2 = x + y$

OR

Q.5 (a) Define following terms (i) Beta function (ii) Sinusoidal function 04
(b) Form partial differential equation
$$z = (x-2)^2 + (y-3)^2$$
 03
(c) Find the Fourier integral representation of the function $f(x) = \begin{pmatrix} 2 & |x| < 2 \\ 0 & |x| > 2 \end{pmatrix}$

07