GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – SUMMER • 2014

		BE - SEWIESTER-III · EAAMINATION – SUMMER · 2014				
Subject Code: 131403 Date: 26-05						
Su	bject	Name: Food Engineering Transport Phenomenon				
		2.30 pm - 05.00 pm Total Marks: 70				
Ins	tructio					
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.				
		Figures to the right indicate full marks.				
Q.1	(a)	Discuss Fick's law of diffusion along with mass transfer Mechanism.	07			
	(b)	Write a short note on dimensional analysis and discuss in brief about dimensionless ratios.	07			
Q.2	(a)	Describe differential manometers in detail.	07			
	What are the assumptions made while deriving continuity equation? Derive	07				
		continuity equation in three dimensions for Cartesian co-ordinates.				
	OR					
	(b)	State and derive Pascal's law.	07			
Q.3	(a)	1.At what depth below the surface of oil, relative density 0.8, will produce a	03			
		pressure of 120 kN/m2? What depth of water is this equivalent to?				
		2. A simple U-tube manometer containing mercury, it is connected to the pipe in which a fluid of apacific gravity 0.8 and having upgrave is flowing. The	04			
		which a fluid of specific gravity 0.8 and having vacuum pressure is flowing. The other end of the manometer is open to atmosphere. Find the vacuum pressure in				
	pipe if the difference of mercury level in the two limbs is 40 cm and the height of					
		the fluid in the left limb from the center of pipe is 15 cm below.	07			
	(b) After discarding any integral constants determine the value of the unkn					
		velocities of w and v that satisfies the equation of three dimensional				
		incompressible continuity for:				
		(a) $u = x^2 yz$, $v = -y^2 x$; (b) $u = x^2 + 3z^2 x$, $w = -z^3 + y^2$				
		OR				
Q.3	(a)	Prove that $\text{Re} = (\rho v d/\mu)$ is dimensionally homogeneous equation. Where $\rho =$	07			
	(-)	density, v= velocity, d= diameter, μ = viscosity and Re= Reynold's number.	~-			
	(b)	Write a short note on stream function. Velocity potential function is given by an expression	07			
		$Ø = -(xy_3/3) - x_2 + (x_3y/3) + y_2$				
		(i) Find the velocity components in x and y directions				
		(ii) Show that $Ø$ represents a possible case of flow				
Q.4	(a)	Discuss in brief about metacentric height and center of buoyancy.	07			
	(b)	Describe in brief about any two of the followings	07			
		1. Fluid properties				
		2. Newton's law of motion				
		3. Types of weirs				
		OR				
Q.4	(a)	Discuss in brief about venturi meter and capillarity.	07			
	(b)	What is a submerged body? State and explain the conditions of equilibrium for	07			
		the same.				

Q.5	(a)	Draw velocity distribution curve for flow of viscous fluid through a circular pipe and also derive an equation for the same. Write a short note on boundary layer concept. OR			
	(b)				
	(b)				
0.5	(\cdot)		1	07	
Q.5	(a)	Define the followings	4. Orifice	07	
		1. Volume density	5. Kinematic viscosity		
		2. Rate of discharge	6. Laminar flow		
		3. Vena contracta	7. Reynold's number	07	
	(b)	b) Answer the followings with appropriate reason			
		1. A rotameter is a device used to a	neasure		
		(a) Velocity of fluid in pipes			
		(b) Velocity of gauges			
		(c) Vortex flow			
		(d) Flow of fluids			
		2. The continuity equation			
		(a) Expresses relationship betwee	en hydraulic parameters of flow		
		(b) Expresses the relationship, b			
		(c) Is based on Bernoulli's theor			
		(d) Relates the mass rate of flow			
		3. Which Of the following, dimens	-		
		(a) Pressure coefficient	1		
		(b) Froude number			
		(c) Darcy friction factor			
		(d) All of the above			
			city at the centre Of pipe is how many		
		times to the average velocity			
		(a) Two			
		(b) Three			
		(c) Four			
		(d) None of the above			
		5. Pascal. Second is the unit of			
		(a) pressure			
		(b)kinematic viscosity			
		(c)dynamic viscosity			
		(d)surface tension			
		6. Center of buoyancy always	.,		
		(a) coincide with center of			
		(b) coincide with centroid	-		
		(c) remains above center o			
		(d) remains below center of			
		7. the floating body is said to be in	-		
		(a) metacentric height is ze			
		(b) metacenter is above the	center of gravity		
		(c) metacenter is below the	center of gravity		
		(d) center of gravity is belo	w the center of buoyancy		
		*****	****		