GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER • 2014

BE - SEMESTER-V • EXAMINATION – SUMMER • 2014			
Su	bject	Code: 150102 Date: 13-06-2014	
Subject Name: Fundamentals of Turbo machines			
	-	0.30 am - 01.00 pm Total Marks: 70	
Instructions:			
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
.	3.	8 8	~-
Q.1	(a)	Draw the complete h-s diagram for	07
		(1) Centrifugal Compressor, and (2) Axial Turbine	
	(b)	What is equilibrium running of any gas turbine plant? Which are the conditions	07
		for equilibrium? Write procedure to find equilibrium points.	
Q.2	(a)	Derive expressions for spouting velocity and stage efficiencies for radial turbine.	07
	(b)	1) How performance of axial compressor is evaluated?	07
		2) Which are the basic assumptions made for matching trends of components for	
		single spool turbojet engine?	
	<i>(</i> -),	OR	- -
	(b)	Draw velocity triangles at entry and exit for 2-stage Pressure compounded	07
		impulse turbine, also explain variation in pressure and velocity while flow	
		passing through the stages.	
Q.3	(a)	Explain the phenomenon of <i>slip</i> in centrifugal compressor. What is slip factor?	07
		How it affects the actual work done and efficiencies of the centrifugal	
		compressor.	
	(b)	Classify the turbo machines in detail.	07
		OR	
Q.3	(a)	Compare the axial machines and the radial machines.	07
	(b)	List the general matching procedure for the gas turbine engines.	07
Q.4	(a)	Write a short note on losses in turbine.	07
-	(b)	Draw and explain the velocity triangle for stage of axial compressor.	07
		OR	
Q.4	(a)	A 50% reaction, axial flow compressor runs at a mean blade speed of 50m/s. the	07
		pressure ratio developed by the machine is 1.3. Determine the blade and air angle	
		if the mean flow velocity was 200m/s. condition at inlet are 1bar and 300K.	
	(b)	Explain radial turbine stage with stage velocity triangle for radial turbine.	07
Q.5	(a)	Define degree of reaction and derive the expression for the same. Define the low	07
-		reaction stage and high reaction stage.	
	(b)	A multistage gas turbine is to be designed with impulse stages, and is to operate	07
		with an inlet pressure and temperature of 6 bar and 900 K and at outlet pressure	
		of 1 bar. The isentropic efficiency of the turbine is 85%. All the stages are to	
		have a nozzle outlet angle of 75° and equal outlet and inlet blade angles. Mean	
		blade speed of 250 m/s and equal inlet and outlet gas velocities. Estimate the	
		number of stages required considering optimum blade to gas speed ratio.	
o -		OR	0-
Q.5	(a)	Draw and explain zero percent, fifty percent and hundred percent reaction axial	07
		turbine stages.	

(b) For a ninety percent IFR turbine stage derive the expressions for power, stage 07 loading coefficient and degree of reaction.
