GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER – V • EXAMINATION – SUMMER 2014

Subject Code: 150103 Subject Name: Aircraft Structure II Time: 10:30 am to 01:00 pm Instructions:

Date: 19-06-2014

Total Marks: 70	Total	Marks:	70
-----------------	-------	--------	----

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) State Castigliano's displacement theorem. Also write the general equation of it 02 for rotation.
 - (b) Justify the statement: "Stability of indeterminate structure is generally higher 03 than that of determine structure".
 - (c) In a member if Centre of Gravity and Shear Centre of a section is coincide, the member is free from ______.
 (2) [Torsion, Bending, Axial stress]
 - (d) The diagonal terms in Stiffness Matrix is always _____. 02 [negative, 0, positive]
 - (e) The primary unknown in Flexibility Matrix Method is _____ and the 02 secondary unknown is _____ . [Displacement, Force
 - (f) State the difference between Symmetrical bending and Unsymmetrical 03 Bending.
- Q.2 (a) For a beam as shown in fig.1, What are the basic determinate structure (beams) 05 are possible?
 - (b) Find the basic unknowns and plot SF and BM diagrams for a beam as shown in Fig.-2 using Flexibility Matrix Method.

OR

- (b) Analyze the truss as shown in fig.3 by Flexibility Matrix Method. The cross 09 section area A and E for all member are same.
- Q.3 (a) 1) State the difference between Displacement Method and Force Method of 07 Structural Analysis.
 2) Define the Terms: Stiffness and Flexibility. What is the relation between them?
 - (b) Obtain the Stiffness Matrix Method For a beam as shown in Fig.-2. 07

OR

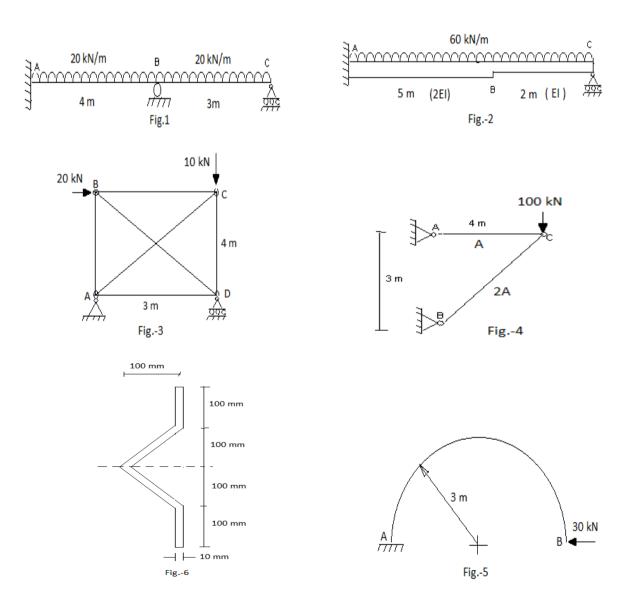
- Q.3 (a) 1) State the difference between Determinate and Indeterminate Structure.
 2) Why Stiffness Matrix Method is generally preferred for computer programming.
 - (b) For a truss as shown in fig.-4, determine the displacement at joint A using 07 Stiffness Matrix Method. Take $A = 10000 \text{ mm}^2$ and $E = 2 \times 10^5 \text{ N/mm}^2$.
- Q.4 (a) Locate the Shear Centre of a 10 mm thin walled section as shown in fig.-6. 07
 - (**b**) Define the following terms:
 - 1) Isotropic Material.
 - 2) Orthotropic Material.
 - 3) Anisotropic Material.

Also write stress-strain relation in 3D elasticity for each material case.

07

- Q.4 (a) Prove that in unsymmetrical bending, the resultant deflection is lye in a plane 07 perpendicular to neutral axis.
 - (b) The rectangular stress component at a point in a three dimensional stress system 07 are defined as:

 $\begin{aligned} \sigma_{xx} &= 20 \text{ N/mm}^2, \quad \sigma_{yy} &= -40 \text{ N/mm}^2, \quad \sigma_{zz} &= 80 \text{ N/mm}^2 \\ T_{xy} &= 40 \text{ N/mm}^2, \quad T_{yz} &= -60 \text{ N/mm}^2, \quad T_{zx} &= 20 \text{ N/mm}^2. \end{aligned}$ Determine the principal stresses at a given point.


- Q.5 (a) State and derive an equation of a Castiglione's Force theorem $F = \partial U/\partial \Delta$ with 07 usual notation.
 - (b) A fix beam of 5 m is subjected to a central point load of 100 kN. Find out fix 07 end moment using Theorem of Least Work.

OR

Q.5 (a) State and explain the "Theorem of Least Work" by giving suitable example. 07

(b) Find out horizontal displacement at free end for a semicircular frame as shown in fig.-5, using Castigliano's theorem. Take $E= 2 \times 10^5 \text{ N/mm}^2$, $I = 3 \times 10^8 \text{ mm}^4$.

