Seat I	No.:	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-V • EXAMINATION – SUMMER • 2014	
Subject Code: 150303 Date: 19-06-2014			
_		ame: Signals and Systems	
±			
Instru	ictions:		
		ttempt all questions. Iake suitable assumptions wherever necessary.	
		igures to the right indicate full marks.	
0.1	()		_
Q-1	(A) (B)	What is size of a signal? Determine the power of the signal $\mathbf{x}(\mathbf{t}) = \mathbf{C} \cos(\mathbf{w}\mathbf{t} + \mathbf{\theta})$. Enlist and explain standard signal models.	7 7
	(D)	Emist and explain standard signar models.	,
Q-2	(A)	Enlist classifications of systems and explain them in brief.	7
	(B)	Draw and explain the block diagram of digital signal processing.	7
	(B)	OR Explain the advantages of digital signal processing.	7
	(2)	Zapama are no unitages of ungital processing.	•
Q-3	(A)	Find the inverse Z-transform of:	7
		$X(Z) = \frac{-z (z+0.4)}{(z-0.8) (z-2)}$	
	(B)	Enlist and explain the properties of DFT.	7
		OR	
Q-3	(A)	What is z-transform? What is R.O.C. and explain its significance. Also determine the R.O.C.	7
		of following signals. i. δ (n) iv. $x(n) = a^n u(n)$	
		ii. δ (n-N) v. $x(n) = a^n u(n) + b^n u(-n-1)$	
	(D)	iii. $x(n) = u(n) + u(-n-1)$ vi. $x(n) = a^n u(n) + b^n u(n)$	_
	(B)	Find out the Z-transform of following: $\mathbf{X}(\mathbf{n}) = \mathbf{a}^{\mathbf{n}} \mathbf{u}(\mathbf{n})$	7
		$\Delta(\mathbf{n}) = \mathbf{a} \cdot \mathbf{u}(\mathbf{n})$	
Q-4	(A)	Write a short note on: The sampling theorem.	7
	(B)	Explain DIT FFT algorithm.	7
	(A)	OR Determine impulase response h(n) for the system described by following equation.	7
	(A)	y(n)-3 y(n-1)-4y(n-2): x(n)+2x(n-1)	,
	(B)	Explain DIF FFT algorithm.	7
Q-5	(A)	Enlist and explain the properties of Fourier transform.	7
Q-3	(A) (B)	Compute the four point DFT of sequence $\mathbf{x}(\mathbf{n}) = \{1, 2, 3\}, \mathbf{x}(0) = 0.$	7
	` ,	OR	
Q-5	(A)	Compute the Fourier transform of $\mathbf{x}(\mathbf{n})=(1)^{\mathbf{n}}\mathbf{u}(\mathbf{n})$. Also give the applications of Fourier transform.	7
	(B)	What is signal reconstruction? Which are the difficulties faced during signal reconstruction?	7
