Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V • EXAMINATION - SUMMER • 2014

Subj	ect (Code: 150304 Date: 24-06-2014	
Subj	ect N	Name: Modeling and Simulation of Biological Systems	
_		:30 pm to 01:00 pm Total Marks: 70	
Instru		<u> </u>	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
Q.1		Figures to the right indicate full marks. Briefly describe the results of simple lung mechanics model for 15 & 60 breaths	07
Ų.1	(a)	/min with neat sketch. What effects does the model adepts while increasing the	07
		frequency of respiration ventilator?	
	(b)	± • • ±	07
Q.2	(a)	Briefly explain the gas exchanger model with appropriate equations.	07
	(b)	Give difference: Distributed Parameter versus Lumped Parameter.	07
	` /	OR	
	(b)	Give difference: Engineering & Physiological Control System	07
Q.3	(a)		07
C	()	terminologies.	
		1. Saccade Duration	
		2. Latent Period	
		3. Saccade magnitude	
		4. Peak Velocity	
	(b)	5. Time at peak velocity Draw the plots and explain the Closed-Loop Analysis of Heart and Systemic	07
	(0)	Circulation Combined.	U/
		OR	
Q.3	(a)		07
C	()	from westheimer's saccadic eye model.	
	(b)	Draw and explain the steady-state analysis of glucose regulation under	07
		a) Normal conditions	
		b) Type-I diabetes	
0.4	(a)	c) Type-II diabetes Draw the simplified model of conding output regulation and derive methomatical	05
Q.4	(a)	Draw the simplified model of cardiac output regulation and derive mathematical expressions for the model.	U/
	(b)	Draw and explain the graphical representation of steady-state operating point.	07
	(6)	OR	0,
Q.4	(a)	Explain nonlinearity in model with appropriate examples.	07
۷.٦	(b)		07
Q.5	(a)		07
Q.S	(a)	examples.	07
	(b)	•	07
	(b)		U/
		in conditions simulating a typical normal human and a Type-2 diabetic. OR	
0.5	(-)		05
Q.5	(a)	Derive the Relationship between Transient and Frequency Responses.	07
	(b)		07
		ventilation during	
		(a) normoxia (PIO2 == 150mm Hg) and	
		(b) exposure to mild hypoxia through ascent to altitude. ***********************************	

1