Seat No.:	Enrolment No.
Scat No	Lindinent 110.

Subject Code: 150906

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V • EXAMINATION - SUMMER • 2014

Date: 24-06-2014

	U	Name: Electrical Power Utilization and Traction	
Tin	-	0.30 am - 01.00 pm Total Marks: 70	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Classify electric drives and state the factors affecting selection of drive. State speed control methods of DC Shunt motor and explain field current control with suitable diagram.	07 07
Q.2	(a) (b)	Explain starting methods for synchronous motor. Explain regenerative braking of DC motor. OR	07 07
	(b)	Compare slip ring induction motor with squirrel cage induction motor. Why double cage induction motor is used?	07
Q.3	(a)	Explain the terms 'dead weight', 'accelerating weight' and 'adhesive weight'. Explain the factors affecting specific energy consumption.	07
	(b)	400 tonne goods train is to be hauled by a locomotive up a gradient of 2% with acceleration of 1 kmphps. Coefficient of adhesion is 20%, track resistance 40 N/tone and effective rotating masses 10% of dead weight. Find the weight of the locomotive & number of axles if the axle load is not to increase beyond 22 tonnes.	07
0.2	()	OR	0.
Q.3	(a)	Drive on expression for specific energy output and specific energy consumption using a simplified speed-time curve and discuss the factors affecting specific energy consumption.	07
	(b)	An electric train has quadrilateral speed-time curve as follows: i. Uniform acceleration from rest at 2 kmphps for 30 seconds ii. Coasting for 50 seconds iii. Breaking period of 20 seconds. The train is moving a uniform up gradient of 1%, tractive resistance is 40 newton per tonne, rotational inertia effect 10% of dead weight, duration of station stop 15 seconds and overall efficiency of transmission gear and motor as 75%. Calculate the value of its schedule speed and specific energy consumption of run.	07
Q.4	(a)	List various methods used for speed control of dc series motors. Explain	07
	(b)	series – parallel control method for speed control of dc series motors. Explain high frequency eddy current heating. OR	07
Q.4	(a) (b)	Explain dielectric heating and give its applications. Explain vertical core type induction furnace.	07 07
Q.5	(a) (b)	Explain basic principle of electrolysis and Faraday's laws of electrolysis. Explain sodium- vapour discharge lamp. OR	07 07
Q.5	(a) (b)	Explain power supply requirements for electrolyte processes State and explain laws of illumination. ***********************************	07 07