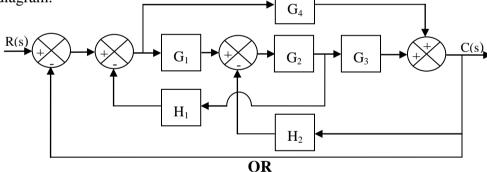
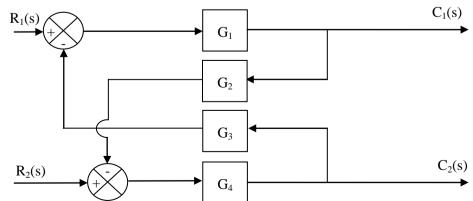

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER • 2014

Subject Code: 160304 Subject Name: Bio Medical Control Theory Time: 10:30 am - 01:00 pm Date: 28-05-2014

Total Marks: 70

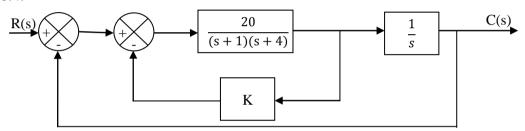

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Give difference between close loop & open loop control system with example. 07
 - (b) Obtain the closed-loop transfer function C(s)/R(s) of below given system by use 07 of Mason's gain formula.


Q.2 (a) Obtain a state-space equation and output equation for the system defined by 07

$$\frac{Y(s)}{U(s)} = \frac{2s^3 + s^2 + s + 2}{s^3 + 4s^2 + 5s + 2}$$

(b) Determine the transfer function of the system represented by following block 07 diagram.

(b) Figure shows a system with two inputs and two outputs. Derive $C_1(s)/R_1(s)$, 07 $C_1(s)/R_2(s)$, $C2(s)/R_1(s)$ & $C_2(s)/R_2(s)$.



(Hint: In deriving outputs for $R_1(s)$, assume that $R_2(s)$ is zero, and vice versa.)

1

Q.3	(a)	Define below given terminologies with proper equations.				10
		i.	Rise Time(t _r)	iv.	Settling Time (t _s)	
		ii.	Peak Time(t _p)	v.	Steady-state Error (e_{ss})	
		iii.	Peak Overshoot (M _p)			
	(b)	Write	Write Mason's Gain formula & explain it with an appropriate example.			
		OR				
Q.3	(a)	Define below given terminologies for signal flow graph.				10
		i.	Node	vi.	Forward Path	
		ii.	Branch	vii.	Loop	
		iii.	Input Node	viii.	Non-touching Loop	
		iv.	Output Node(or sink)	ix.	Forward path gain	
		v.	Path	х.	Loop Gain	
	(b)	Draw the response for Under damped, Critically damped & Over damped 04				04

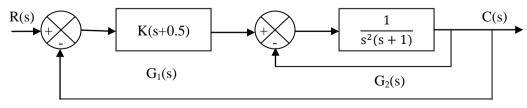
Q.4 (a) Consider the system shown in Figure. Draw a root-locus diagram. Then determine 10 the value of k such that the damping ratio of the dominant closed-loop poles is 0.4.

(b) Explain Series compensation, Parallel compensation, Feedback compensation & 04
Load compensation techniques with proper example.

OR

Q.4 (a) A control system has the open loop transfer function as given below.

$$G(s).H(s) = \frac{k(s+a)}{s^2(s+b)}$$
 with b>a

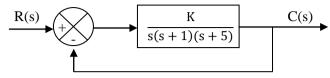

systems.

Plot its root-loci as k varies from zero to ∞ with a = 2 & b = 10. Also calculate the value of k for the largest damping ratio of the Oscillatory mode.

(b) Determine the position, velocity & acceleration error constants for the feedback 04 control system with unity feedback whose open loop transfer function are

a)
$$G(s) = \frac{1}{s (0.5s+1)(0.2s+1)}$$

b) $G(s) = \frac{1}{s (0.1s+1)}$


Q.5 (a) Consider the control system shown in Figure. Using the inverse polar plot, 07 determine the range of gain K for stability.

10

(b) Discuss Routh's stability criteria for below given characteristic equation. $S^{6} + 2S^{5} + 8S^{4} + 12S^{3} + 20S^{2} + 16S + 16 = 0$

Q.5 (a) Obtain the phase and gain margins of the system shown in figure for the two 07 cases, where K = 10 and K = 100 with the help of bode plot. Also discuss about the stability of same system with both gain.

(b) i. The characteristic equation for a feed back control system is given by $\mathbf{07}$ $\mathbf{S}^3 + 20k.\mathbf{S}^2 + 5\mathbf{S}^2 + 10\mathbf{S} + 15 = 0.$

Determine the range of k for which the system is stable.

ii. For the unity feedback system having open loop transfer function

$$G(s) = \frac{k(s+2)}{s(s^3 + 7s^2 + 12s)}$$

Determine the system "TYPE" and error constant K_p , K_v , K_a .

07