Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER • 2014

BE - SEMESTER–VI • EXAMINATION – SUMMER • 2014		
Subi	ject Code: 161004 Date: 28-05-2014	
Subject Name: VLSI Technology and Design		
Time: 10:30 am - 01:00 pm Total Marks: 70		
Instructions:		
1. Attempt all questions.		
	2. Make suitable assumptions wherever necessary.	
	3. Figures to the right indicate full marks.	
0.1		
Q.1	Explain the VLSI design flow using the D'Gajski's 'Y' – chart.	7
(a) (b)	Explain the VLSI design now using the D Gajski's 1^{-1} – chart. Explain the LOCOS technique for device isolation. Why it is preferred over the Etched field	7
(U)	oxidation technique?	/
Q.2	Oxidation technique:	
(a)	Discuss the four components of threshold voltage (V_T) in detail.	7
(b)	Explain the Short Channel Effects on threshold voltage and mobility of the charge carriers.	7
(\sim)	OR	
(b)	Calculate the threshold voltage V_{T0} at $V_{SB} = 0$, for a polysilicon gate <i>nMOS</i> transistor, with	7
	the following parameters:	
	Substrate doping density $N_A = 3.5 \times 10^{16} \text{ cm}^{-3}$	
	Polysilicon gate doping density $N_D = 4 \times 10^{20} \text{ cm}^{-3}$	
	Gate oxide thickness $t_{ox} = 800 A^{\circ}$	
	Oxide-interface fixed charge density $N_{ox} = 6.5 \times 10^{10} \text{ cm}^{-2}$.	
	Physical and material constants :	
	Thermal voltage $kT/q = 26 mV$	
	Energy Gap of silicon(Si) $E_g = 1.12 \ eV$	
	Intrinsic Carrier Concentration of (Si) $n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$	
	Dielectric constant of vaccum $\varepsilon_o = 8.85 \times 10^{-14} F/cm$	
	Dielectric constant of silicon $\varepsilon_{si} = 11.7 \text{ x} \varepsilon_0 F/cm$	
03	Dielectric constant of silicon dioxide $\varepsilon_{ox} = 3.97 x \varepsilon_o F/cm$	
Q.3	Explain the MOSFET capacitances in detail.	7
(a) (b)	Consider a CMOS inverter with the following parameters:	7 7
(0)	$nMOS V_{T0,n} = 0.6 V, \mu_n C_{ox} = 60 \ \mu A/V^2 \ (W/L)_n = 8$	/
	$\mu_{MOS} = V_{10,n} = 0.5 V$, $\mu_{n} c_{ox} = 00 \ \mu A V$ $(W/L)_n = 0$ $pMOS = V_{70,p} = -0.7 V$, $\mu_{p} C_{ox} = 25 \ \mu A / V^2$ $(W/L)_p = 12$	
	Calculate the noise margins and the switching threshold (V_{th}) of this circuit.	
	The power supply voltage $V_{DD} = 3.3 V$.	
	OR	
Q.3		
(a)	Draw the inverter circuit with <i>depletion type nMOS</i> load. Mention the operating regions of	7
	driver and load transistors for different input voltages. Derive critical voltage points V_{OH} ,	
	V_{OL} and V_{IH} for depletion- load inverter.	
(b)	Write a note on CMOS Ring Oscillator circuit.	7
Q.4		
(a)	Define propagation delay and derive the expression for τ_{PHL} for CMOS Inverter. Assume	7
	ideal step as an input to CMOS Inverter.	_
(b)	Explain the basic principle of pass transistor circuit. Explain logic '1' transfer and logic '0'	7
	transfer.	

- Q.4
 - (a) Explain the dynamic CMOS logic (Precharge Evaluation) and discuss the cascading problem in dynamic CMOS logic.
 - (b) Explain the Transmission Gate (TG). Draw six-transistor CMOS -TG implementation of the 7 XOR function.

Q.5

- (a) Explain Latch up problem in CMOS inverter. Mention causes and remedy for avoiding latch 7 up.
- (b) Implement the following Boolean function using CMOS.

$F = \overline{(ABC + DE)}$

Find a equivalent CMOS inverter circuit for simultaneous switching of all inputs, assume that (W/L)p = 20 for all pMOS transistors and (W/L)n = 10 for all nMOS transistors.

OR

- **Q.5** Write short note (Any TWO)
 - (a) On-Chip Clock Generation and Distribution.
 - (**b**) Comparison of FPGA and CPLD.
 - (c) Comparison of Full-scaling and Constant voltage scaling.
 - (d) Built In Self Test (BIST).
 - (e) Domino CMOS logic.

14

7

7