GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER • 2014

		BE - SEMIESTER-VI • EXAMINATION – SUMMER • 2014				
Su	bject	Code: 163702 Date: 23-05-2014				
Sul	bject	Name: Water and Wastewater Treatment Design				
Time: 10:30 am to 01:00 pm Total Marks: 70						
	ructio					
1. Attempt all questions.						
	2.	Make suitable assumptions wherever necessary.				
	3.	Figures to the right indicate full marks.				
Q.1	(a)	Give the difference between	07			
Q.1	(a)	(i) High rate Trickling filter and low rate trickling filter	07			
		(ii) Aerobic and anaerobic treatment processes				
	(b)	List out all coagulation equipment with diagram	07			
Q.2	(a)	Sketch the diagram of conventional RSF and even explain all modification of RSF	07			
	(b)	Design the approximate of a set of rapid gravity filters for treating water	07			
	(U)	required for a population of 40,000 the rate of supply being	07			
		170liters/day/person. The filters are rated to work 4500 lit/hr/m ²				
		OR				
	(b)	Design a RBC system for following data	07			
	(0)	1) BOD_5 of waste water from PST=200mg/l	07			
		2) Permissible BOD of effluent=30mg/l				
		3) Permissible organic loading rate= 1.05 kg BOD ₅ /m ² /day				
		4) Waste water discharge=10MLD				
Q.3	(a)	Write short notes on design guideline for ASP reactor to be used in treatment	07			
Q.5	(a)	of Industrial waste water	07			
	(b)	An average operating data for conventional activated sludge treatment plant is	07			
	(~)	as follows	•••			
		1) Waste water flow $=60,000 \text{m}^3/\text{day}$				
		2) Volume of tank= $1,50,000$ m ³				
		3) Influent BOD=200mg/l				
		4) Effluent BOD=20mg/l				
		5) MLSS=3500mg/l				
		6) Effluent SS=40mg/l				
		7) Waste sludge SS=15000mg/l				
		8) Quantity of waste sludge=300m ³ /day				
		Based on the information above, determine				
		1) Aeration period				
		2) F/M ratio				
		3) % efficiency of BOD removal				
		4) Sludge age(Days)				
		OR				
Q.3	(a)	Enlist and explain the basic steps involved in the overall anaerobic oxidation of	07			
τ	()	a waste water				
	(b)	Describe steps for design of Trickling filter	07			

Q.4	(a)	If a 1.0 m^3 /s flow water treatment plant uses ten sedimentation basins with a Surface Overflow Rate of 20 m^3/m^2 -day, what should be the surface area of each tank	07
	(b)	Why sometime any existing treatment plant need upgradation and what are methods of up gradation	07
		OR	
Q.4	(a)	The quantity 40 mg/L of alum is added to 40,000 m ³ /d of raw water containing 75 mg/L of suspended solids and 152.5 mg/L of HCO ₃ (i) Is there sufficient alkalinity in the raw water for chemical precipitation? (ii) If not, how much should be added? (iii) What is the daily consumption of alum and daily production of sludge?	07
	(b)	Write the prime objective of following unit (i) Flocculator (ii) Bio reactor (iii) Filtration system	07
Q.5	(a)	Draw the treatment plant only with the consideration of following (i) Alum and lime dosing tank (ii) Both ASP and RBC are incorporated in secondary treatment (iii) Pressure sand filter with 6 filter bed	07
	(b)	Draw and explain of typical diagram of UASB reactor with their all zones OR	07
Q.5	(a)	Explain the exchange reaction mechanism of dissolved solids with the cation and anion exchange resins and also explain that how they can be regenerate after the exhausted	07
	(b)	Suppose two stage trickling filter is provided with recirculation ratio=1.0, and keeping total volume of two TF is $2000m^3$. What will be the BOD ₅ of waste water effluent from 2^{nd} stage filter. If In first filter BOD ₅ load in kg/day is 487.5 and flow rate is 3MLD	07
