
GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER-VII- EXAMINATION –SUMMER-2014

Subject Code: 170605 Date: 31-05-			2014	
Tir	Subject Name: Advanced Structural AnalysisTotal Marks: 7Time:02:30pm-05:00pmTotal Marks: 7Instructions:1. Attempt all questions.)	
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	What is non linearity? Explain Geometrical, Material and Loading non linearity giving appropriate examples.	07	
	(b)	Enlist various steps involved in solution of problem using Finite Element Method and Explain Discretization in details.	07	
Q.2	(a)	Determine the Shape functions for Constant Strain Triangle. Use natural Co- ordinate Systems.	07	
	(b)	Explain "Incremental Analysis with Iteration" technique. OR	07	
	(b)	Derive the relation for Action or Displacement vector on member axis and Structure axis for Plane frame	07	
Q.3		Analyse the non prismatic fixed beam shown in fig-1 by the Stiffness Matrix method using member approach. Find the force and displacement responses. Draw S.F and B.M diagrams. Take EI=80000kNm ²	14	
Q.3		OR Analyse the three span beam shown in fig-2 by the Stiffness Matrix method using member approach. Draw B.M diagram. Assume constant flexural rigidity, EI. Use of Symmetry is permitted.	14	
Q.4	(a)	Analyse the three Bar Assembly shown in fig-3 by the Stiffness Matrix method using member approach. Find the support reaction and bar forces. Take $A=6cm^2$ for each bar.	07	
	(b)	Derive the Shape functions for four Noded Quadrilateral elements.	07	
Q.4	(a) (b)	Explain "Beam with Elastic Supports" in details Analyse the truss shown in fig-4 by the Stiffness Matrix method using member approach. find joint displacements, support reactions, bar forces and bar elongations. Take EA=6000kN for each bar	04 10	
Q.5	(a)	Analyse the truss shown in fig-5 by Stiffness Matrix method using member approach. Find support reactions, bar forces. Take $AE=60x10^3$ kN.Use of symmetry is permitted.	07	
	(b)	Analyse the frame shown in fig-6 by Stiffness Matrix member approach. Draw free body diagram of frame, Take AE=8000kN,EI=20000kNm ² OR	07	
Q.5	(a)	Analyse the portal frame shown in fig-7 by the Stiffness Matrix method using member approach. Consider the effect of indirect loading in the form of a	14	

settlement of 10mm at the support D. Take $E=2.5 \times 10^4 \text{ N/mm}^2$ Find the complete force response and draw B.M diagrams.
