GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – SUMMER • 2014

Subject Code: 170807

Subject Name: Power System Analysis

Time: 02:30 pm - 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give the merits and demerits of per unit system. Prove that the per-unit 07 impedance of a transformer is the same regardless of the side from which it is viewed.
 - (b) Consider the 50 Hz power system the single-line diagram of which is 07 shown in Figure. The system ratings are:

Generator G₁: 200 MVA, 20 kV, $X_d = 15\%$

Generator G₂: 300 MVA, 18 kV, $X_d = 20\%$

Generator G₃: 300 MVA, 20 kV, $X_d = 20\%$

Transformer T₁: 300 MVA, 220Y/22 kV, X = 10%

Transformer T₂: Three single-phase units each rated 100 MVA, 130Y/25 kV, X = 10%

Transformer T₃: 300 MVA, 220/22 kV, X = 10%

The transmission line reactances are as indicated in the figure. Draw the reactance diagram choosing the Generator 3 circuit as the base.

- Q.2 (a) With the simplifying assumptions explain the SC transient on a 07 transmission line and hence prove that; I_{mm} (max. possible) = $2[\sqrt{2V/|z|}]$, i.e. doubling effect. Also draw necessary waveforms to explain doubling effect.
 - (b) Explain different types of current limiting reactors. Show how they are 07 connected at power stations. Write their uses also.

OR

(b) Explain how an unbalanced set of three phase voltages can be 07 represented by systems of balanced voltages.

Date: 31-05-2014

Total Marks: 70

1

Q.3 (a) Two synchronous motor are connected to the bus of a large system 07 through a short transmission line as shown in figure. the rating of components are :

Motors (each): 1 MVA, 440 V, 0.1 p.u. transient reactance. Line: 0.05 ohm reactance.

Large system: short circuit MVA at its bus at 440 V is 8.

when the motors are operating at 440 V, calculate the short circuit symmetrical current fed into a 3-phase fault at motor bus.

(b) A delta connected balanced resistive load is connected across an un 07 balanced three phase supply as shown in figure. With currents line A and B specified. Find the symmetrical components of line currents.

- Q.3 (a) What are the causes of unsymmetrical faults in power system? Derive an 07 expression for the fault current for a single line-to-ground fault.
 - (b) Justify the following statement:"For a fault at alternator terminals, a single line to ground fault is generally more severe than a 3-ph fault whereas for faults on transmission lines, a 3-ph fault is more severe than other faults."
- Q.4 (a) Derive the power angle equation: $P = (E_G E_M/X) \sin \delta$ with usual 07 notations. Also draw the power angle curve.
 - (b) A synchronous generator of reactance 1.20p.u. is connected to an infinite **07** bus (|v| = 1p.u.) through transformers and a line of total reactance of 0.60p.u. The generator no load voltage is 1.20p.u. and is inertia constant is H = 4 MW-s/MVA. The resistance and machine damping may be assumed negligible. The system frequency is 50 Hz. Calculate the frequency of natural oscillations if the generator is loaded to (i) 50% and (ii) 80% of its maximum power limit.

OR

Q.4 (a) Derive the equation $Y_{bus} = A^tYA$, Where $Y_{bus} = bus$ admittance matrix, **07** A = bus incidence matrix, $A^t = transpose$ of A and Y = primitive admittance matrix.

07

(b) For the system of figure. Find the voltage at the receiving bus at the end 07 of the first iteration. Load is 2 + j0.8 p.u. Voltage at the sending end (slack) is 1 + j0 p.u. Line admittance is 1.0 - j4.0 p.u. Transformer reactance is j0.4 p.u. Off-nominal turns ratio is 1/1.04. Use the GS technique. Assume $V_R = 1 \perp 0^\circ$.

- Q.5 (a) Discuss the advantages and limitations of Gauss-Seidal and Newton 07 Raphson methods. Of this two, which method is generally preferred for solving the load flow problem?
 - (b) What are the conditions to be satisfied before a 3-phase alternator is 07 synchronized to infinite bus bars?

OR

- Q.5 (a) Explain how the active and reactive power loading of an alternator 07 working on infinite bus-bar is controlled.
 - (b) Describe briefly the principle of operation of load dispatch organization 07 coordinating different types of power plants in a power system.
