GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII • EXAMINATION - SUMMER • 2014

Subject Code: 180403 Date: 03-06-2014

Subject Name: Biostatistics

Time: 10.30 am - 13.30 pm Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Standard necessary charts are provided in this question paper.
- 5. Take table value for 5% level of significance as 1.96 for normal distribution.
- Q.1 The following data resulted from an experiment to compare 3 burners P, Q, and R. *Latin Square Design* was used as the tests were made 3 engines and were spread over three days.

Day		Engines							
Monday	P 16	Q 17	R 20						
Thursday	Q 16	R 21	P 15						
Friday	R 15	P 12	Q 13						

- Q.2 (a) In an ontological examination of infants, out of 145 infants examined 20 were found to have some type of ontological abnormalities. Does it confirm with the statement that 20% of the infants have ontological abnormalities? Test the hypothesis.
 - **(b)** Explain the types of probability.

OR

(b) How would you select the appropriate measure of central tendency?

14

07

07

07

07

07

07

Q.3 (a) An experiment gave the following values:

v (ft/min)	350	400	500	600
t (min)	1.62	1	0.75	0.62

It is known that are connected by the relation $v = at^b$. Find the best possible values of 'a' and 'b'.

(b) Calculate the rank correlation for the following data for marks in Molecular Biology and Immunology, by Spearman's method.

Mol. Bio.	8	36	98	25	75	82	92	62	95	35
Immunology	84	51	91	60	68	62	86	58	35	49

OR

Q.3 (a) The pressure and volume of a gas are related by the equation $pV^{\gamma} = k$ where γ and k being constants. Fit this equation to the following set of f observations:

· · · · · · · · · · · · · · · · · · ·			9			
P (kg/cm ²)	0.5	1	1.5	2	2.5	3
V (litres)	1.62	1	0.75	0.62	0.52	0.46

(b) In a poster making technical event, 10 competitors [A to J] are ranked by two judges in following order. Calculate the coefficient correlation.

	A	В	С	D	Е	F	G	Н	I	J
Rank by Judge 1	1	4	8	9	6	10	7	3	2	10
Rank by Judge 2	4	8	7	5	9	6	10	2	3	1

1

Q.4 (a) The percentage of vitamin-A in two varieties of mangoes were found out and the 07 following results were obtained:

Variety	Average Vitamin-A	Number of mangoes(n)	Standard Deviation
	content		(S)
Junagadh	92%	12	15%
Valsad	84%	15	19%

Find out whether there is significant difference in Vitamin –A contents of two varieties.

(b) The following frequency distribution gives the number of chillies per plant. Calculate the mean deviations from the mean for the number of chillies per plant.

the mean acviation	is nom the i	ilean for the	mamber of	emmes per	Piant.	
No. of Chillies per plant	10-16	17-23	24-30	31-37	38-44	45-51
No. of Plants	8	10	23	29	18	12

OR

Q.4 (a) The weight of 10 guinea pigs (in grams) when brought in the laboratory and after one month were recorded in the following table. Calculate and conclude whether the gain in weight is statistically significant or not.

Guinea Pig	, ,	Weight (in gram)								
In the beginning	49	41	37	41	42	37	39	38	41	35
After one month	52	43	46	52	46	38	42	41	42	38

(b) Data on waxy endospermic plants were recorded in maize. Calculate the standard deviation from the following data:

Waxy endospermic	7	8	9	10	11	12
Plants						
No.of Plants	13	13	18	17	15	14

Q.5 (a) A survey of 320 families with 5 children in each family provides following data:. Dose this data supports the hypothesis that there is equal probability of male and female births?

No. of families	No. of Boys	No. of Girls
14	5	0
56	4	1
110	3	2
88	2	3
40	1	4
12	0	5
320	17	15

(b) Write a note on testing a hypothesis.

OR

- **Q.5** (a) Explain the role of Biostatistics in modern research.
 - (b) Give the definitions: Mode, Population, Variance, Quartiles, Geometric Mean, 07 Harmonic Mean, Histogram.

2

07

07

07

07

07

T	able : Va	lues of l	F at the	5% Sig	nificanc	e Level				
DoF- denominator	DoF- numerator									
Dor- denominator	1	2	3	4	5	6	7	8	9	
1	161	200	216	225	230	234	237	239	241	
2	18.50	19.00	19.20	19.20	19.30	19.30	19.40	19.40	19.40	
3	10.10	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	
4	7.71	6.40	6.59	6.39	6.26	6.16	6.09	6.04	6.00	
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80.	
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	
30	4.17	.3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	

	Table:	Values	of F at	Г he 1%	Signific	ance Lev	⁄el			
DoF-denominator	DoF- numerator									
Dor-denominator	1	2	3	4	5	6	7	8	9	
1	4052	5000	5403	5625	5764	5859	5928	5982	6022	
2	98.50	99.90	99.20	99.20	99.30	99.30	99.40	99.40	99.40	
3	34.10	30.80	29.50	28.70	28.20	27.09	27.70	27.50	27.30	
4	21.20	18.00	16.70	16.00	15.50	15.20	15.00	14.80	14.70	
6	13.70	10.90	9.78	9.15	8.75	8.47	8.26	8.10	7.98	
8	11.30	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	
10	10.00	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	

Table value of "t"	at different degree	s of freedom of	n P=0.05 and 0.01 level

v -	P		
	0.05	0.01	
1	6.314	31.821	
2	2.920	6.965	
3	2.353	4.541	
4	2.132	3.747	
5	2.015	3.365	
6	1.943	3.143	
7	1.895	2.998	
8	1.860	2.896	
9	1.833	2.821	
10	1.812	2.764	
11	1.796	2.718	
12	1.782	2.681	
13	1.771	2.650	
14	1.761	2.624	
15	1.753	2.602	
16	1.735	2.583	
17	1.740	2.567	
18	1.734	2.552	
19	1.729	2.541	
20	1.725	2.528	
21	1.721	2.518	
22	1.717	2.508	
23	1.714	2.500	
24	1.711	2.492	
25	1.708	.2.485	
26	1.706	2.479	
27	1.703	2.463	
28	1.701	2.467	
29	1.699	2.462	
30	1.697	2.457	
40	1.684	2.423	
60	1.671	2.390	
120	1.658	2.338	

Table: Distribution of χ2 correspond	ling to different leve	els of significa	ince
Degree of freedom(df)	Probability (P)		
Degree of freedom(dr)	0.05	0.01	0.001
1	3.84	6.64	10.83
2	5.99	9.21	13.82
3	7.82	11.35	16.27
4	9.49	13.29	18.47
5	11.07	15.09	20.52
6	12.59	16.81	22.46
7	14.07	18.48	24.32
8	15.51	20.09	26.13
9	16.92	21.67	27.88
10	18.31	23.21	29.59
11	19.68	24.73	31.26
12	21.03	26.22	32.91
13	22.36	27.69	34.53
14	23.69	29.14	36.12
15	25.00	30.58	37.70
16	26.30	32.00	39.25
17	27.59	33.41	40.79
18	28.87	34.81	42.31
19	30.14	36.19	43.82
20	31.41	37.57	45.32
21	32.67	38.93	46.80
22	33.92	40.29	48.27
23	35.17	41.64	49.73
24	36.42	42.98	51.18
25	37.65	44.31	52.62
26	38.89	45.64	54.05
27	40.11	46.96	55.48
28	41.34	48.28	56.89
29	42.56	49.59	58.30
30	43.77	50.89	59.70