GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER- 1st /2nd (OLD SYLLABUS) EXAMINATION - SUMMER 2015

Subject Name: Mathematics-1				/2015	
mstr	 Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1	(a)	(i)	Verify Cauchy's mean value theorem for $\frac{1}{x}$ and $\frac{1}{x^2} \forall x \in [a,b]$, a>0.	03	
		(ii)	Find maxima and minima of the function $f(x,y)=x^3+y^3-3x-12y+20$.	04	
	(b)	(i) (ii)	Find the Taylor's series expansion $f(x,y)=x^3 - 2x + 4$ at a=2. Evaluate using L'Hospital rule $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$	03 02	
		(iii)	Evaluate using L'Hospital rule $\lim_{x \to 1} (1-x) \tan(\frac{\pi c}{2})$	02	
Q.2	(a)	(i)	Trace the curve $1 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$	04	
		(ii)	Discuss convergence of the integral $\int_{0}^{4} \frac{1}{x^{-2}} dx$.	03	
	(b)	(i)	Evaluate $\int_{1+x^2}^{\infty} \frac{dx}{1+x^2}$.	04	
		(ii)	State fundamental theorem of integral calculus and hence find $\frac{dy}{dx}$ if	03	
			$\mathbf{y} = \int_{1}^{x^2} \cos t dt$		
Q.3	(a)	(i)	Test the convergence of $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$.	04	
		(ii)	Does sequence whose n th term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converges? If so find,	03	
			limit of a _{n.}	0.4	
	(b)	(i)	Show that the series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$ is convergent for p > 0.	04	
		(ii)	Find convergence of sequence $\left\{\frac{(-1)^n}{2}\right\}$.	03	
0.4	(-)	(\cdot)		0.4	

Q.4 (a) (i) State and prove Euler's theorem on homogenous functions. 04

1

(ii) If
$$u = \operatorname{cosec}^{-1}\left(\frac{x+y}{x^2+y^2}\right)$$
, show that $xu_x + yu_y = \tan u$. 03

- (b) (i) Find the equations of tangent plane and normal line to the surface 04 $2x^2+y^2+2z=3$ at the point (2,1,-3).
 - (ii) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and X-axis is revolved 03 about X-axis is generate a solid then find volume.

Q.5 (a) (i) Evaluate
$$\int_{0}^{1} \int_{y}^{1+y^{2}} x^{2} y dx dy$$
 04

(ii) If
$$\mathbf{x} = \mathbf{r} \cos \theta$$
, $\mathbf{y} = \mathbf{r} \sin \theta$, $\mathbf{z} = \mathbf{z}$, calculate $\frac{\partial(x, y, z)}{\partial(\mathbf{r}, \theta, z)}$ 03

(b) (i) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} (x^{2} + y^{2}) dx dy$$

(ii) If $u=2xy, v = x^{2} - y^{2}, x = r\cos\theta, y = r\sin\theta, z = z_{s}$ calculate 03

$$\frac{\partial(u,v)}{\partial(r,\theta)}$$

Q.6 (a) (i) Find the direction derivative of $f(x,y,z) = 4xz^3-3x^2y^2z$ at the point (2,- 04 1,2).

Q.7 (a)

(ii) Find the angle between the surfaces $x^2+y^2+z^2 = 9$ and $z = x^2+y^2-3$ at the **03** point (2,-1,3).

(b) (i) Evaluate using Green's theorem, $\int_{c} \left[(x^2 + xy) dx + (x^2 + y^2) dy \right]$ where c is 04 the surface bounded by $x = \pm 1$, $y = \pm 1$

(ii) the surface bounded by $x = \pm 1$, $y = \pm 1$. (ii) Prove that vector $\vec{F} = (z + \sin y)i + (x \cos y - z)j + (x - y)k$ 03 is irrotational vector.

(i) By changing the order of integration evaluate
$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$$
. 04

(ii) Find
$$\frac{dy}{dx}$$
 for $(\cos x)^y = x^{\sin y}$ using partial differentiation. 03

(b) (i) Does limit of function
$$\frac{2xy}{x^2 + 3y^2}$$
 exists at x=0, y=0? 04

(ii) Test the convergence of the series
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$
. 03
