GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER- 1st / 2nd (OLD SYLLABUS) EXAMINATION – SUMMER 2015

Su Tii	Subject Code:110009Date: 15/06Subject Name: Maths-IITime: 10.30am-01.30pmTotal MarInstructions:		
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary.	
Q.1	(a)	(1) Solve the system of equations by Gauss Elimination method -2x + y - z = 4, $x + 2y + 3z = 13$, $3x + z = -1$	04
		(2) Use the matrices $A = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$ to	03
	(b)	Verify that (AB) $^{-1} = B^{-1}A^{-1}$ Determine the value of λ so that the system of homogeneous equations $2x + y + 2z = 0$, $x + y + 3z = 0$, $4x + 3y + \lambda z = 0$ has (i) Trivial solution (ii) Non- trivial solution.	07
Q.2	(a)	 (1) Let u = (2,-1, 0, 4) and v = (0,5,-2,1). Evaluate the following terms: (i) u.v (ii) v (iii) d(u,v) 	03
	(b)	 (2) State and prove the Pythagorean theorem in Rⁿ. (1) Let R⁴ be the Euclidean inner product. Find the cosine of the angle between 	04 02
		the vectors $\mathbf{u} = (1,0,1,0)$ and $\mathbf{v} = (-3,-3,-3,-3)$. (2) Find rank and nullity of the matrix $\begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$	05
Q.3	(a)	(1) Let V be the set of all ordered pairs (x,y) of real numbers over the field R of the real numbers. Check whether V is a vector space over R defined by the operations: $(x_1,y_1) + (x_2,y_2) = (x_1+x_2,y_1+y_2)$ and $k(x,y) = (k^2x, k^2y)$	04
	(b)	(2) Show that $s = \{ (1,0,0), (0,1,0), (0,0,1) \}$ is a basis of \mathbb{R}^3 . Define the coordinates of V relative to a basis. Find the coordinates of a polynomial $\mathbb{P} = 5 + 11x + 2x^2$ relative to the basis $\mathbb{S} = \{1-x, 1+x, 1-x^2\}$ of $p_2(\mathbb{R})$.	03 07
Q.4	(a)	(1) Expand the linearly independent set $S = \{(1,2,2,1), (1,-1,-1,1)\}$ to be a basis for \mathbb{R}^4 .	04
		(2) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ then find A^{-4} .	03
	(b)	Find the Eigen values and Eigen vectors for the matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$	07
Q.5	(a)	Find matrix P that diagonalizes $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$. Also determine P ⁻¹ AP.	07

- (b) Reduce the quadratic form $3x^2 + 3z^2 + 4xy + 8xz + 8yz$ into canonical form 07 using linear transformation.
- **Q.6** (a) (1) Determine linear transformation T: $\mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,0) = (1,2,3) and **04** T (1, 1) = (0, 1, 0). Also find T (2, 3).
 - (2) Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be defined by T (x,y) = (2x+3y,5x+7y). Is T one-to-one? **03** If so, find formula for T⁻¹(x,y).
 - (b) (1) Using induced matrix associated with each transformation determine the new point after applying the transformation to the given point
 - (i) x = (1,-2,1) reflected about the xy-plane
 - (ii) x = (9, 4, -2) projected on the x-axis.
 - (iii) x = (1,-3) rotated 30^{θ} in the counter clockwise direction.
 - (2) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T\left[\binom{x1}{x2}\right] = \begin{bmatrix}x1-2x2\\-x2\end{bmatrix} \text{ and let } B = \{e_1,e_2\} \text{ and } B' = \{\begin{bmatrix}2\\1\end{bmatrix},\begin{bmatrix}-3\\4\end{bmatrix} \text{ then}$$

using $[T]_{B'} = P^{-1}[T]_B P$, Find $[T]_{B'}$. Where P is transition matrix from B' to B.

- Q.7 (a) Let R³ have Euclidean inner product. Transform the basis
 Q.7 (a) Let R³ have Euclidean inner product. Transform the basis
 Q.7 (b) (1) Find the least squares solution of the linear system AX = b given by
 Q.7 (b) (1) Find the least squares solution of the linear system AX = b given by
 - (1) Find the least squares solution of the inear system XX = 0 given by $x_1 + x_2 = 7$, $-x_1 + x^2 = 0$, $-x_1 + 2x_2 = -7$. Find the orthogonal projection of b on the column space of A. (2) Show that $x_1 + x_2 = 1$ ($\cos \theta + \sin \theta$)
 - (2) Show that matrix $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ is an orthogonal matrix. 02

04