GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER- 1st /2nd (OLD SYLLABUS) EXAMINATION - SUMMER 2015

Su	bject	Name: Vector Calculus and Linear Algebra	Date: 15/06/2015	
	tructio	0.30am-01.30pm Total Marks: ns: Attempt any five questions.	70	
	2.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	State Caley-Hamilton theorem and hence find inverse of $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$	07	
	(b)	Find the Eigen values of A ⁻¹ , A ¹⁰ , A + 3I where $A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 1 & -1 & 3 \end{bmatrix}$. Also find det(A).	07	
Q.2	(a)	Find rank and nullity of the matrix $\begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \end{bmatrix}$	07	
		$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$ and state rank-nullity theorem.		
	(b)	Find bases for the row and column space of	07	
		$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$		
Q.3	(a)	(1) Check W = { $(x, y)/xy \ge 0$ } is a subspace of R ² ? Justify.	02	
		(2) Check $W = \{(x, y, z) / x^2 + y^2 + z^2 = 1\}$ is a subspace of R^3 ? Justify. (3) Define: Basis, Subspace, skew symmetric matrix	02 03	
	(b)	(1) Let R^4 have the Euclidean inner product. Fine the cosine of the angle θ between the vectors $u = (4,3,1,-2)$ and $v = (-2,1,2,3)$	02	
		(2) If u and v are orthogonal vectors in an inner product space, then prove that $\ \mathbf{u} + \mathbf{v}\ ^2 = \ \mathbf{u}\ ^2 + \ \mathbf{v}\ ^2$	02	
		(3) Solve by Cramer's rule x + y + 2z = 8 $-x - 2y + 3z = 1$ $3x - 7y + 4z = 10$	03	

Q.4 (a) Solve by Gauss-Jordan method

$$\begin{aligned} x_1 + 3x_2 - 2x_3 &+ 2x_5 &= 0\\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 &= -1\\ 5x_3 + 10x_4 &+ 15x_6 &= 5\\ 2x_1 + 6x_2 &+ 8x_4 + 4x_5 + 18x_6 &= 6 \end{aligned}$$

- (b) Consider the vector space \mathbb{R}^3 with the Euclidean inner product. $u_1 = (1,1,1)$, **07** $u_2 = (0,1,1)$, $u_3 = (0,0,1)$. Apply Gram-Schmidt process to find and orthogonal basis. Also normalize the orthogonal basis into orthonormal basis.
- Q.5 (a) (1) Let $T: M_{nn} \to R$ be the transformation that maps an $n \times n$ (n > 1)matrix into 03 its determinant: T(A) = det(A) whether T is a linear transformation?

by

(2) Let
$$T_A : \mathbb{R}^4 \to \mathbb{R}^4$$
 be multiplication

$$A = \begin{bmatrix} 1 & 3 & -2 & 4 \\ 2 & 6 & -4 & 8 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{bmatrix}$$

Determine whether T_A is one to one. State the result which you have used.

(b) Find algebraic and geometric multiplicity of A, where

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$$

Q.6 (a) Verify Green's theorem in the plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C 07 is the boundary of the region defined by x = 0, y = 0, x + y = 1

- (b) Use Stoke's theorem to calculate the circulation of the field 07 $F = (y^2 + z^2)i + (x^2 + z^2)j + (y^2 + x^2)k$ around the curve C:The boundary of the triangle cut from the plane x + y + z = 1 by the first octant, counterclockwise when viewed from above.
- Q.7 (a) Suppose that the set V is the set of positive real numbers with addition and 07 scalar multiplication defined as follows

$$x + y = xy$$

 $ax = x^{a}$

Prove that V is a vector space.

(b) Show that the quadratic $5x^2 + 6y^2 + 7z^2 - 4xy + 4yz = 162$ is an ellipsoid. 07

04

07