Enrolment No	
--------------	--

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER– III EXAMINATION – SUMMER 2015 Subject Code:130001 Date:06/06/2015				
Tiı	ne:02		TotalMarks: 70	
Inst	tructio 1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.		
Q.1	(a)	 (i) Find the General Solution of the differential equation y' = e^{x-y} + xe^{-y}. (ii) Find the Particular Solution of the Differential Equation y"+9y = cos 5x by using Method of Undetermined Co-efficients. 	02 02	
		(iii) Find the Inverse Laplace Transform of following function: $\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}$	03	
	(b)	(i) Define Ordinary Point of the differential equation $y'' + P(x)y' + Q(x)y = 0$. (ii) Find the value of $\beta(2,3)$	02 02	
		(iii) Express the function $f(x) = x^3$ as a Fourier Series in interval $[-\pi, \pi]$.	03	
Q.2	(a)	(i) Evaluate: $\int_{0}^{\infty} x^2 e^{-x^3} dx.$	02	
		(ii) Solve: $(D^3 - 1)y = 0.$	02	
		(iii) Solve the Partial Differential Equation: $u_{xy} = \cos x \cos y$.	03	
	(b)	 (i) Find the Laplace Transform of function f(t) =100^t + 2t¹⁰ + sin10t (ii) Using Method of Variation of Parameters solve the differential equation y"+ y = cot x. 	03 04	
	(b)	(i) Find the Laplace Transform of the function $f(t) = t \sin t$.	03	
	(U)	(i) Find the Laplace Hanstoff of the function $f(t) = t \sin t$. (ii) Solve: $(D^2 - 49)y = \sinh 3x$	03 04	
Q.3	(a)	Find the Laplace Transforms of following functions: (i) $\sin^3 2t$ (ii) $\sin^2 2t$	07	
	(b)	State Convolution Theorem and using it find Inverse Laplace Transform of	07	
		function $F(s) = \frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$		
		OR		

Q.3 (a) Using Laplace Transform solve the differential equation: y''-4y'+3y = 6t-8, y(0) = 0, y'(0) = 0.

(b)

Evaluate: (i)
$$\beta(m,n) = 2\int_{0}^{\overline{2}} \sin^{2m-1}\theta \cos^{2n-1}d\theta$$
.

(ii)
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta$$
.

Q.4 (a)
(i) Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

(ii) $P_n(1) = 1$. 04

(b) (i) Solve the differential equation y'' + y = 0 by the Power Series Method. 03 (ii) State Rodrigue's Formula and using it compute $P_2(x)$. 04

Q.4 (a) (i) Solve the differential equation (x + y)dx + (y - x)dy = 0. 03

(ii) Solve :
$$x^2 \frac{d^2 y}{dx^2} - 2y = x^2 + \frac{1}{x}$$
. 04

(b) (i) If $y_1 = e^{-2x}$ is One Solution of y' + 4y + 4y = 0 then find the Second 03 Solution.

(ii) Solve:
$$(3x+2)^2 \frac{d^2 y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1.$$
 04

Q.5 (a) (i) Find Half Range Cosine Series for the function $f(x) = e^{ax}$ in interval [0,1]. 03 (ii) Express the function $f(x) = x + x^2$ as a Fourier Series in interval $[-\pi, \pi]$. 04

(b) (i) Evaluate:
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{4}}} dx.$$
 03

(ii) By using the relation between Beta and Gamma function prove that $\frac{\beta(m,n+1)}{\beta(m+1,n)} = \frac{\beta(m,n)}{\beta(m,n)}.$

$$\begin{array}{cccc} n & - & - & \\ n & m & m+n \\ & & & \mathbf{OR} \end{array}$$

Q.5 (a) Solve completely the equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ representing the vibrations of a string of length *l* fixed at both ends given that,

$$y(0,t) = y(l,t) = 0, y(x,0) = f(x), \frac{\partial y}{\partial t}(x,0) = 0, 0 < x < l.$$

(b) Find the Fourier Transform of the function f defined as follows: $f(x) = \frac{x e^{-x} \quad x > 0}{0};$ $f(x) = \frac{x e^{-x} \quad x > 0}{0};$

07

07