GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III EXAMINATION - SUMMER 2015

Subject Code: 130502 **Subject Name: Fluid Flow Operations** Time:02.30pm-05.00pm

Date:04/06/2015

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the concept of hydrostatic equilibrium and derive barometric equation. 07
 - (b) Discuss different types of manometers used for pressure measurement with neat 07 Sketches.
- Explain in detail the behavior of Newtonian and non Newtonian fluid with 07 Q.2 **(a)** suitable example and neat sketch.
 - **(b)** A simple U-tube manometer is installed across an orifice meter. The manometer 07 is filled with mercury (S.G. 13.6) and the liquid above mercury is CCl_4 (S.G. 1.6) The manometer reading is 200 mm. Calculate pressure drop in N/m^2 .

OR

- (b) A centrifuge bowl 250 mm ID is turning at 4000 rpm. It contains a layer of 07 chlorobenzene 50 mm thick. If the density of chlorobenzene 1109 kg/m³ and pressure at liquid surface is atmospheric, what gauge pressure is exerted on the wall of centrifuge bowl?
- Bernoulli equation without friction and explain the correction of 07 Q.3 **(a)** Derive Bernoulli equation for fluid friction.
 - (b) Discuss friction loss from sudden expansion and sudden contraction of cross 07 section of pipe through which incompressible fluid is flowing.

OR

Q.3	(a) (b)	Write a short note on prevention of leakage around moving parts. Discuss in detail about gate valve and globe valve.	07 07
Q.4	(a)	Derive the Hagen-Poiseuille equation for the volumetric flow rate in a straight circular pipe.	07
	(b)	A pump draws a solution of S.G. 1.84 from a storage tank through a 75 mm Schedule 40 steel pipe. The efficiency of the pump is 60 %. The velocity in the suction line is 0.914 m/s. The pump discharges through a 50 mm Schedule 40 steel pipe to an over head tank. The end of discharge pipe is 15.2 m above the	07

J/kg. Calculate pressure developed and power required by the pump.

OR

level of solution in the feed tank. Friction losses in entire piping system are 29.9

What is meant by cavitation and priming? Explain the different characteristic 07 0.4 **(a)** curve of the centrifugal pump with neat sketches. A venturimeter is to be installed in a 100 mm line to measure the flow of 07 **(b)** water .The maximum flow rate is expected to be 75 m³/h at 15°C. The manometer used to measure the differential pressure is filled with mercury and water is to fill the heads over surfaces of mercury. The water temperature is 15 °C throughout. If manometer reads 1.25 m and venturi coefficient is 0.98 , calculate throat diameter and power to operate venturimeter if 90 % of the pressure differential is recovered. Data : S.G. of mercury = 13.6, S.G. of water = 1

Q.5	(a)	Briefly describe the construction and working of orifice meter and derive expression for orifice coefficient.	07
	(b)	Discuss positive displacement pumps in detail.	07
		OR	
Q.5	(a)	Discuss boundary layer separation and wake formation.	07
	(b)	Prove that in laminar flow of Newtonian fluid, velocity distribution is parabola with respect to radius and with apex at the centerline of the pipe.	07
