Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER IV • EXAMINATION – SUMMER 2015

Date: 03/06/2015

Subject Code: 140403

Tir	ne: 1 ructio 1. 2.	Attempt all questions.	70
Q.1	(a) (b)	State different types of heat transfer and explain general laws of heat transfer for each mode. Derive the governing equation for unsteady state heat conduction with neat	07 07
Q.2	(a)	diagram. State and explain in detail Plank's law, Stefan-Boltzman law, Wein's displacement law and Kirchhoff's law for black body radiation.	07
((b)	Derive equation of overall heat transfer coefficient U for the case of simultaneous conduction and convection heat transport in case of a plane wall. OR	07
	(b)	What is thermal radiation? Explain the mechanism of radiation using different theories.	07
Q.3	(a) (b)	Differentiate between Natural and Forced convection with examples of each. Define and give physical significance of Prandtl No., Nusselt No., Peclet No. and Grashoff No.	07 07
Q.3	(a)	OR Describe with neat diagram Shell & tube heat exchanger with all its components involved.	07
	(b)	Derive the equation of LMTD for heat exchangers.	07
Q.4	(a)	State the methods of dimensional analysis and explain Rayleigh's method of dimensional analysis with suitable examples.	07
	(b)	Classify pressure measuring devices in detail and discuss any one with neat sketch.	07
Q.4	(a)	OR Explain Newton's law of viscosity. Also give detailed classification of fluids based on this law.	07
	(b)	Explain cavitations and priming of a pump in detail.	07
Q.5	(a)	State different metering devices. Explain venturimeter or orificemeter in detail with neat sketch.	07
	(b)	Explain fluidization fundamentals and its industrial applications. OR	07
Q.5	(a)	Derive an equation to find local velocity (u) as a function of radius (r) in a circular pipe.	07
	(b)	Explain Reynolds's No. and its significance along with Reynolds's experiment in detail.	07
