Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER IV EXAMINATION – SUMMER 2015

Subject code: 140502 Date: 01/06/2015 Subject Name: Chemical Engineering Thermodynamic- I Time: 10.30am-01.00pm **Total Marks: 70 Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 (a) Define: (i) internal energy, (ii) heat capacity, (iii) path function (iv) intensive 07 property, (v) reversible process (vi) triple point, (vii) Isobaric process.
 - (b) What is thermodynamics? Derive a mathematical expression of the first law of 07 thermodynamics for a steady state flow process.
- **O.2** (a) Air at 1 bar and 25 °C enters a compressor at low velocity, discharges at 3 bar and enters a 07 nozzle in which it expands to a final velocity of 600 m s⁻¹ at the initial condition of temperature and pressure. If the work of compression is 240 kJ per kg of air, how much heat must be removed during compression?

(b)	Write a short note on Mollier diagram and P H diagram.	07
	OR	

- (b) Describe PVT behavior of pure substances using PV and PT diagrams.
- State various equations of state for real gas. Discuss Van der Waals equation in **Q.3** 07 (a) detail.
 - (b) Estimate the change in enthalpy and entropy when liquid ammonia at 270 K is 07 compressed from its saturation pressure of 381 kPa to 1200 kPa. For saturated liquid ammonia at 270 K, $V^1 = 1.551 \times 10^{-3} \text{ m}^3 \text{ kg}^{-1}$ and $\beta = 2.095 \times 10^{-3} \text{ k}^{-1}$.

OR

- (a) Derive the expression for change in entropy when an ideal gas changes its state from 07 **Q.3** (P_1, V_1, T_1) to (P_2, V_2, T_2) .
 - (b) A mass of 500 gm of gaseous ammonia is contained in a 30000 cm^3 vessel immersed 07 in a constant temperature bath at 65 °C. Calculate the pressure of the gas by using generalized virial coefficient correlation. Data Given: Molecular weight of ammonia = 17 gm/molAt 65 °C, Tc= 405.7 K, Pc=111.32 atm, Acentric factor (w) = 0.253 0 400

$$B^{0} = 0.083 - \frac{0.422}{T_{r}^{1.6}}$$
 and $B^{1} = 0.139 - \frac{0.172}{T_{r}^{4.2}}$

(a) For homogeneous fluid of constant composition write down fundamental property 07 Q.4 relation and Maxwell Equations using Born diagram.

07

(b) For two phases α and β of pure species coexisting at equilibrium giving relation 07 between molar gibbs energies of individual phase, derive Clausius Clapeyron equation. Clearly mention all assumptions required.

OR

- **Q.4** (a) Using Maxwell's equation prove that : $dH = Cp dT + V(1 - \beta T) dP$ $dS = Cp dT/T - \beta V dP$. Where β = Volume expansivity.
 - (b) Give general definition for Residual properties. Derive equation to calculate residual 07 molar volume (V^R) of any pure component gas. Calculate the residual molar volume (V^R) of isopropanol vapor at temperature 473 K and pressure 1000 kPa. Data given: At 473 K and 1000 kPa, Compressibility factor (z) = 0.9014

Q.5		Explain in detail multistage compression process. Describe absorption refrigeration cycle.	07 07
		OR	
Q.5	(a)	Briefly explain heat engine and heat pump.	07
	(b)	Explain the linde process for gas liquefaction.	07

07