GUJARAT TECHNOLOGICAL UNIVERSITY										
			BE SEMESTER IV EXAMINATION – SUMI	MER 2015						
Subje	ect c	ode:	140503	Date: 03/06/2015						
Subject Name: PROCESS HEAT TRANSFER										
Time	: 10	.30an	n-01.00pm	Total Marks: 70						
Instructions:										
	1.	Attem	pt all questions.							
	2. Make suitable assumptions wherever necessary.									
	3.	Figure	es to the right indicate full marks.							
0.1	(a)		Do as directed		07					
		(1)	Define thermal diffusivity							
		(2)	When warm and cold fluid is mixed, the heat transfe	er is mainly by						
		(2)	(a) conduction (b) convection (c) radiation (d) both ((a) & (c)						
		(3)	An insulation should have							
		(-)	a. low thermal conductivity b. high thermal co	onductivity						
			c. less resistance to heat transfer d. a porous struct	ure						
		(5)	Sieder and Tate equation for determination of H.T.C	c is valid						
			(a) for fluid in familiar flow (b) for fluid in turb (c) when Grashoff number is very important	bulent now						
			(d) for liquid metal							
		(6)	Maximum heat transfer rate is obtained in							
		(7)	a. laminar flow b. turbulent flow c. creeping flow d.	transition region						
		(7)	(a) sum (b) difference (c) ratio (d) n	one of these						
	(b)		Derive an expression for heat flow through a	cylinder. State all the	07					
			necessary assumption							
Q.2	(a)		Derive an expression for radial heat conduction thro	ugh tubes	07					
				(X7 · 11 / 1						
	(b)		assumption	write all the necessary	07					
			OR							
	(b)		Discuss critical insulation thickness		07					
			0							
Q.3	(a)		1000 kg/hr of cheese 15 ^o C is pumped through a tu	be 7.5 cm in diameter.	07					
			through 1.2 m length of tube maintained at 90	0 C. Calculate the heat						
			transfer coefficient and the mean temperature of ch	eese leaving the heated						
			section. For cheese following properties values may	be used.						
			$k=0.43$ W/m °C, $\zeta = 1100$ kg/m °Cp= 2.85 kJ/kg °C, u=86400 kg/hr m	,						
			μ 00100 kg m.m							
	(b)		Describe Wien's displacement law and Stefan Boltz	mann law	07					
0.1			OR		<u> </u>					
Q:3	(a)		Define following terms Black body, reflectivity, space density of radiation	monochromatic	07					
			emissive power, emissivity, white body							
	(b)		Explain with sketch, the various method of feeding i	in multiple-effect	07					
			evaporator.							

1

Q.4	(a)	Listing the assumption derive the equation for logarithmic mean temperature difference (LMTD) for parallel flow heat transfer							
	(b)	What is Boiling ? Explain regime of pool boiling with neat sketch. Specify critical heat flux.							
		OR							
Q.4	(a)	Explain film wise and drop wise condensation in detail							
	(b)	Water at 60° C enters a tube 2.5 cm dia and 3.0 m long at a mean flow velocity of 2 cm/s. Calculate the exit water temperature Tb ₂ , if the wall temperature is constant at 80 °C.							
		Drag antiag of motor of	$co^0 C$	$\epsilon\epsilon^0$ C					
		Properties of water at	00° C	00°					
		ς Cn	4.19 kJ/kg^{0}	$4 185 k I/k a^{0}C$					
		Cp v	4.10 kJ/kg C	4.165 KJ/Kg C					
		к D	3.02	2 78					
		μ	$4.71*10^{-4}$ kg/m.s	$4.36*10^{-4}$ kg/m.s					
Q.5	(a)	Write the classification of heat exchanger and with neat sketch							
		explain shell and tube heat exchanger							
	(b)	Write the physical significance of various dimensionless groups involved in heat transfer study (Any Five)							
		OR							
Q.5	(a)	Discuss absorption of radiation for opaque solids.							
	(b)	Explain Vapor recompression and mechanical recompression for evaporators.							
