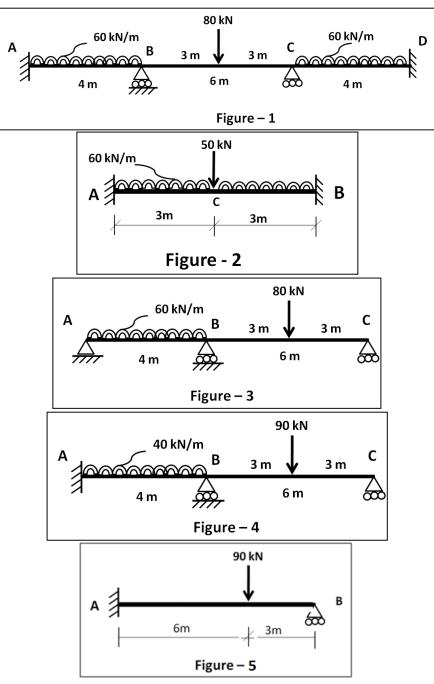
Enrolment No.\_\_\_\_\_

## Seat No.: \_\_\_\_\_\_ GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-IV • EXAMINATION - SUMMER 2015**


| Subject Code: 140603 Date: 03/                    |              | Code: 140603 Date: 03/06/2015                                                                                                                                                                           | 06/2015 |  |
|---------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
|                                                   |              | Vame: Structural Analysis - II                                                                                                                                                                          |         |  |
| Time: 10.30am-01.00pmTotal Marks: 70Instructions: |              |                                                                                                                                                                                                         |         |  |
|                                                   |              | bt all questions.                                                                                                                                                                                       |         |  |
|                                                   | _            | suitable assumptions wherever necessary.                                                                                                                                                                |         |  |
| <b>3.</b> F                                       | igure        | s to the right indicate full marks.                                                                                                                                                                     |         |  |
| Q-1                                               | (a)<br>(b)   | Differentiate between pre-tensioning and post-tensioning in detail.<br>What is an influence line diagram? Explain its importance in structural                                                          | 4<br>3  |  |
|                                                   | (~)          | analysis.                                                                                                                                                                                               | •       |  |
|                                                   | (c)<br>(d)   | Explain: Distribution factor and Rotation contribution factor<br>Write advantages of fixed beam over simply supported beam.                                                                             | 4<br>3  |  |
| Q-2                                               | (a)          | Analyze the beam shown in Figure-1 by using Kani's method and draw bending moment diagram.                                                                                                              | 7       |  |
|                                                   | <b>(b</b> )  | Analyze the fixed beam shown in Figure-2 and draw bending moment diagram only.                                                                                                                          | 7       |  |
|                                                   | <b>(b)</b>   | <b>OR</b><br>Analyze the Continuous beam shown in Figure - 3 and draw bending moment                                                                                                                    | 7       |  |
|                                                   | (b)          | diagram only.                                                                                                                                                                                           | 7       |  |
| Q-3                                               | <b>(a)</b>   | State Castigliano's theorem I and II.                                                                                                                                                                   | 4       |  |
|                                                   | (b)          | Analyze the beam shown in Figure - 4 by using Moment Distribution method<br>and draw Shear Force and Bending Moment Diagrams.<br><b>OR</b>                                                              | 10      |  |
| Q-3                                               | (a)          | Define the term 'sway'. Enlist the situation wherein say occur in portal frames.                                                                                                                        | 4       |  |
|                                                   | ( <b>b</b> ) | Analyze the beam shown in Figure - 4 by using Slope Deflection method and draw Shear Force and Bending Moment Diagrams.                                                                                 | 10      |  |
| Q-4                                               | <b>(a)</b>   | Using consistent deformation method determine all reaction components of beam as shown in Figure – 5 and plot SFD and BMD.                                                                              | 7       |  |
|                                                   | (b)          | Using Castigliano's 1 <sup>st</sup> theorem, find the slope and the deflection at the free<br>end of a cantilever beam of span 6m and subjected to a UDL of 30kN/m<br>throughout the span.              | 7       |  |
| <b>O-4</b>                                        | (a)          | <b>OR</b><br>Using Unit Load method, find the deflection at the centre for a simply                                                                                                                     | 7       |  |
| Q-4                                               | (a)          | supported beam of span 8m subjected to a UDL of 30kN/m throughout the span.                                                                                                                             | ,       |  |
|                                                   | (b)          | A propped cantilever beam of span 4m is subjected to a UDL of $60$ kN/m throughout the span. Using Castigliano's $2^{nd}$ theorem, find the reactions and draw Shear force and bending moment diagrams. | 7       |  |

- Q-5 (a) A prestressed concrete beam of section  $300 \times 500$  mm is subjected to a 7 prestressing force of 2000 kN with an eccentricity of 100 mm from bottom. It is subjected to a live load of 20 kN/m over a span of 10 m. Calculate the stresses at top and bottom fibre at mid-span for (i) at transfer and (ii) after the application of live load. Draw bending stress distribution diagrams. Take unit weight of concrete =  $24 \text{ kN/m}^3$ .
  - (b) State and explain Muller Breslau's principle. State the significance of 7 influence line diagram in structural analysis.

## OR

- Q-5 (a) Draw influence line diagrams of reaction at A and B for a propped 7 cantilever beam AB of span 4 m with ordinate interval of 1.0 m using Muller Breslau principle.
  - (b) What are the losses in prestress? Explain any one in detail.

7



\*\*\*\*\*\*\*\*