Subject Code: 141701

Subject Name: Control Theory

Date: 03/06/2015

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV • EXAMINATION - SUMMER 2015

Time: 10.30am-01.00pm Instructions: Total Ma				rks: 70	
THSG W	1. 2. 3.	Attem Make	pt all questions. suitable assumptions wherever necessary. es to the right indicate full marks.		
Q.1		(a) (b)	Differentiate between open loop system and closed loop system. Briefly explain the first order system and its time response to a unit step input.	07 07	
Q.2		(a)	Define the following terms in relation to time response of a system. (1) Rise time (2) Peak time (3) Steady state error (4) Overshoot	07	
		(b)	Prepare a mathematical model of a series R-C circuit connected to a DC supply. Obtain the transfer function between capacitor voltage and supply voltage.	07	
			OR		
		(b)	Prepare a mathematical model of a series R-L circuit connected to a DC supply. Obtain the transfer function between inductor current and supply voltage.	07	
Q.3		(a)	Explain with suitable example how MATLAB can be used to obtain state space representation of a system from its transfer function and vice versa.	07	
		(b)	Select a block diagram of your choice and obtain the corresponding signal flow graph. The derived signal flow graph must contain minimum two non-touching loops. Obtain the transfer function of this system using Mason's gain formula.	07	
			OR		
Q.3		(a)	Select a block diagram of your choice. The selected diagram must contain minimum three loops. The block diagram must contain summing points, take-off points and minimum 10 blocks. Obtain the transfer function of this system using block diagram reduction techniques.	07	
		(b)	Briefly discuss the mathematical model of a thermal system.	07	
Q.4			Explain the Root-locus technique in detail with a suitable example. OR	14	
Q.4		(a) (b)	Write a short note on Routh-Herwitz stability criteria. Briefly discuss the mathematical model of a mechanical system.	07 07	
Q.5		(a)	What do you mean by frequency response analysis? Obtain the general expression of steady state output for a system with a transfer function $G(s)$ and connected to a sinusoidal input $u(t) = A \sin(wt)$.	07	
		(b)	Select a suitable example and explain how MATLAB can be used to obtain Bode plots.	07	
0.5		(2)	OR Write a short note on Rode plots. Define gain margin and phase margin	07	
Q.5		(a) (b)	Write a short note on Bode plots. Define gain margin and phase margin. Briefly explain polar plots and its significance.	07 07	
