GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER • 2015

Subject Code: 150303 Date: 11/0 Subject Name: SIGNAL & SYSTEMS			5/2015	
Time:02.30pm – 05.00pm Total Mar			70	
Inst	1. 2.	ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Design a second order notch filter to have zero transmission at 125 Hz and a sharp recovery of gain to unity on both sides of 125 Hz. The significant frequency to be processed is $fh = 200$ Hz.	07	
	(b)	Give classification of signals with examples.	07	
Q.2	(a)	For a system specified by the equation $y[n+1] - 0.8y[n] = x[n+1]$ Find the frequency response of this LTID system.	07	
	(b)	Prove that if $x[n]u[n] \leftrightarrow X[z]$ then $x[n-m]u[n] \leftrightarrow z^{-m}X[z] + z^{-m}\sum_{n=1}^{m} x[-n]z^{n}$ OR	07	
	(b)	Prove that if $x[n]u[n] \leftrightarrow X[z]$ then $x[n-m]u[n] \leftrightarrow z^{-m}X[z] + z^{-m}\sum_{n=1}^{m} x[-n]z^n$	07	
Q.3	(a)	Determine the z-transform of $X[n]=(0.9)^n u[n] + (1.2)^n u[-(n+1)]$	07	
	(b)	Find the inverse z transform of $X[Z] = \frac{-z(Z+0.4)}{(Z-0.8)(Z-2)}$, If the ROC is	07	
		a) 0.8< Z <2		
		b) $ Z > 2$ OR		
Q.3	(a)	Sketch the following signals:	07	
		i) $u(-t+2)$ ii) $u(t+2) + u(t+1)$		
		ii) $u(t-5) + u(t+1)$ iii) $u(2t+1)$		
	(b)	Obtain canonic direct and transposed canonic realization of following Transfer	07	
		Functions i) $5/(z+27)$		
		i) $(z+1)/(z^2+5z+6)$		
Q.4	(a)	Explain the phenomena of signal reconstruction and also discuss difficulties associated	07	
	(b)	with signal reconstruction? Determine which of the systems with input f(t) and output y(t) are linear and	07	
	(0)	which are non-linear.	07	
		i) $dy/dt + 3t y(t) = t^2 f(t)$ ii) $dy/dt + y^2 = f(t)$		
		OR		
Q.4	(a)	Find the convolution of $x_1(t)$ and $x_2(t)$ for the following signals: i) $x_1(t) = e^{-at}u(t)$ and $x_2(t) = e^{-bt}u(t)$	07	
		ii) $x_1(t) = tu(t) \text{ and } x_2(t) = u(t)$		
	(b)	Justify that PCM is an application of Sampling Theorem.	07	
Q.5	(a)	Explain the application of Fourier Transform? And compute Fourier Transform of $x[n] = (1)^n u(n)$.	07	

07

(b) Explain properties of Discreet Fourier Transform and compute four point DFT $x(n) = \{0, 1, 2, 4\}$

OR

- (a) Explain the term "System" and classify the systems on basis of its properties (b) Solve the differential equation (D2+3D+2)y(t) = Dx(t). if the initial conditions Q.5 07 07
 - are y(0+) = 2 and y'(0+)=3 and the input is a) $10e^{-3t}$
 - b) 5
