GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER • 2015

Subject Code: 150403Date: 11/05/2Subject Name: Chemical Reaction EngineeringTime:02.30pm-05.00pmTime:02.30pm-05.00pmTotal MarksInstructions:Total Marks			5/2015	
		s: 70		
IIIS	1. 2.			
Q.1	(a)	 i) Define rate of reactions in different useful ways. ii) Define: molecularity, Order of reaction 	05 02 07	
Q.2	(b) (a)	Briefly describe representation of non elementary reactions. The irreversible reaction A+B \rightarrow AB has been studied kinetically, and the rate of formation of product has been found to be well correlated by the following rate equation: $r_{AB} = kC_{B}^{2}, \dots$ independent of C _A .	07 07	
	(b)	What reaction mechanism is suggested by this rate expression if the chemistry of the reaction suggests that the intermediate consists of an association of reactant molecules and that a chain reaction does not occur? Derive expressions to determine kinetics by integral method for bimolecular type second order reaction $A+B\rightarrow R$ with $-r_A = kC_AC_B$ OR	07	
	(b)	Derive the C_{Rmax} and t_{Rmax} for the first order reactions given below: A ^{k1} $\rightarrow R$ — ^{k2} $\rightarrow S$	07	
Q.3	(a) (b)	Explain Arhenious theory of temperature dependency. Derive expression to determine kinetics using half life time of reaction method. OR	07 07	
Q.3	(a) (b)	Write short note on Optimum Temperature Progression profile. Explain various ideal reactors with its characteristics.	07 07	
Q.4	(a) (b)	Derive Performance equation for Mixed Flow Reactor. Enzyme E catalyzes the fermentation of substance A (the reactant) to product R. Find the size of Mixed flow reactors need for 95% conversion of reactant in a feed stream ($v_0=25$ Lit/min) and reactant ($C_{A0}=2$ moles/Lit) and enzyme. The kinetics of fermentation at this enzyme concentration are given by A \rightarrow R $-r_A = 0.1 C_A/(1+0.5C_A)$ moles /Lit Minute OR	07 07	
Q.4	(a) (b)	Derive design equation for recycle reactor. Explain Qualitative product distribution for series reaction.	07 07	
Q.5	(a) (b)	Explain the term instantaneous fractional yield and overall fractional yield of a product. Give its advantages in product distribution. Consider a feed $C_{A0} = 100$, $C_{B0} = 200$, $C_{i0} = 100$ to a steady flow reactor. The isothermal gas phase reaction is A+ 3B \rightarrow 6R. Find X _A , X _B , and C _B . (C _A = 40).	07 07	
Q.5	(a) (b)	OR Explain Quantitative product distribution for mixed flow reactors for the reaction $A \rightarrow R \rightarrow S$. Write short note on integral & differential method of analysis.	07 07	
