GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER V • EXAMINATION – SUMMER • 2015

Subject Code: 150404 Subject Name: Principles of Process Engineering-II Time:02.30pm-05.00pm

Date:07/05/ 2015

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Notations used have their conventional meanings.
- Q.1 (a) Draw classification chart of mass transfer operations along with examples in 07 each category.
 - State and explain Fick's first law for unidirectional molecular diffusion. Also, 07 **(b)** differentiate between two types of molar flux N_A and J_A and derive $J_A = -J_B$ for binary diffusion.
- 0.2 Explain the concept of equilibrium and principles for interphase mass transfer 07 (a) between two insoluble phases.
 - State various theories used in mass transfer to explain meaning of mass transfer 07 **(b)** coefficients and explain any one theory in detail.

OR

- (b) In an O_2 - N_2 gas mixture at 1 atm. pressure and 25°C, the concentrations of 07 oxygen at two planes 2 mm apart are 10 and 20 volume % respectively. Calculate the flux of diffusion of O_2 for the case where,
 - (i) N₂ is non-diffusing.

(ii)There is equimolar counter diffusion of the two gases.

Data: D_{02-N2} at 25°C and 1 atm. = 2.065 x 10⁻⁵ m²/s

- (a) Discuss various factors to be considered in making choice of solvent for liquid-07 0.3 liquid extraction.
 - If 1000 kg/h of a nicotine (C) water (A) solution containing 1% nicotine 07 **(b)** is to be counter currently extracted with kerosene at 20° C to reduce the nicotine content to 0.1%. Determine (i) the minimum kerosene rate and (ii) the number of theoretical stage required if 1150 kg of kerosene is used per hour.

Sr. No.	х'	у'	Sr. No.	х'	у'
1	0	0	5	0.00751	0.00686
2	0.001011	0.000807	6	0.00988	0.00913
3	0.00246	0.001961	7	0.0204	0.01870
4	0.00502	0.00456			

x': kg nicotine/ kg water and y': kg nicotine/ kg kerosene Water and kerosene are essentially insoluble.

OR

- Define liquid-liquid extraction (LLE). Give the usefulness of LLE in 0.3 05 (a) comparison with distillation.
 - A solution of nicotine in water containing 1% nicotine is to be extracted with 09 **(b)** kerosene at 293 K (20°C). Water and kerosene are essentially insoluble. Assume the equilibrium relationship to be: Y = 0.9 X

Where, Y = kg nicotine/ kg kerosene

and X = kg nicotine/ kg water

		(i) Determine the percentage extraction of nicotine if 100 kg of a feed solution is extracted with 150 kg of solvent (kerosene)(ii) Repeat for three theoretical extraction using 50 kg solvent each time	
Q.4	(a) (b)	With neat sketch, explain Shanks system in leaching. Write a short note on absorption factor in case of gas absorption. OR	07 07
Q.4	(a) (b)	Discuss any equipment of leaching with neat diagram. Derive an expression of N_A for steady state molecular diffusion of liquid A through non-diffusing liquid B.	07 07
Q.5	(a) (b)	Explain minimum Liquid-Gas ratio for absorbers with sketches Differentiate between direct and indirect mass transfer operations in detail	07 07
Q.5	(a) (b)	OR Explain criteria for choice of solvent for gas absorption. Explain gas absorption with chemical reaction.	07 07
