Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER • 2015

Subject Code: 150602Date: 05-05-2015Subject Name: Hydrology and Water Resources EngineeringTime: 02.30 pm - 05.00 pmInstructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Differentiate between low and high head power plants. Discuss components 07 of a hydroelectric power plant.
 - (b) With a neat sketch, describe various zones of storage in a reservoir. Also 07 suggest measures to control reservoir sedimentation.
- Q.2 (a) What is the need for planning of water resources projects? Discuss the steps 07 involved in the water resources planning.
 - (b) Discuss causes of drought and drought contingency planning. 07

OR

- (b) What is meant by 'water harvesting'? Explain methods of roof water 07 harvesting and water harvesting for agricultural use.
- Q.3 (a) (i) Explain various forms of precipitation.03
 - (ii) Explain the use of tipping bucket type rain gauge. 04
 - (b) The rates of rainfall for successive 30 minute period of a 3-hour storm are 07 1.5, 3.2, 4.3, 2.7, 2.1 and 1.2 cm/hr. The surface runoff in response to the storm is estimated to be 3.0 cm. Determine φ-index and w-index. Consider a total of depression and interception losses of 1.0 cm.

OR

- Q.3 (a) (i) A rain gauge 'D' was inoperative during a specific storm. The rainfall 03 recorded at three surrounding stations A, B and C during that storm were 52, 85 and 70 mm respectively. If the average annual rainfall of stations A, B, C and D are 650, 900, 820 and 700 mm respectively, estimate the storm rainfall of station D.
 - (ii) The rainfall values at gauging stations and corresponding areas of Thiessen's polygons for a drainage basin are as follows:

Station	А	В	С	D	E	F	G
Area of Thiessen's Polygon (km ²)	160	135	92	110	68	70	35
Rainfall (cm)	10.0	13.5	9.1	12.6	11.2	14.0	10.8

Compute the average rainfall over the basin.

- (b) What are the factors that affect Evaporation? Describe any one method of 07 measurement of evaporation.
- Q.4 (a) Explain procedure to derive s-curve hydrograph from a given unit 07 hydrograph. What are the uses of s-curve hydrograph?
 - (b) Discuss occurrence of groundwater with a neat sketch and define various 07 water bearing formations.

OR

Q.4 (a) Define Hydrograph. Draw a typical single-peaked hydrograph and explain its 07 components.

04

Q.4 (b) The ordinates of flood hydrograph for a drainage basin in response to a 6-07 hour storm are observed as follows:

Time (hour)		0	3	6	9	12	15	18	21	
Hydrograph Ordinate (cumec)		c) 15	35	67	109	151	175	195	153	
Time (hour)	24	27	30)	33	36	39	42	45	
Hydrograph Ordinate (cumec)	139	113	87	7	63	47	31	23	15	

Considering total rainfall of 7 cm during the storm, average rate of infiltration loss of 0.5 cm/hr and a constant base flow of 15 cumec, derive ordinates of the 6-hour unit hydrograph. Also estimate area of the basin.

- **Q.5** (a) Discuss causes of flood.
 - (b) Explain flood routing through reservoirs.

OR

Q.5 (a) Write a short note on flood control by constructing levees and flood walls.
(b) Briefly explain method of estimating design flood for a water resources 07 project.

07

07