Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE VI SEMESTER- • EXAMINATION – SUMMER 2015

Su	bject	Code:160105 Date:12/05/201	5
Subject Name: Computational Fluid Dynamics II Time: 10.30AM-01.00PM Instructions: Total Marks		70	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Discuss the physical problem of Prandtl Meyer expansion wave by explaining the analytical solution of flow.	07
	(b)	Explain the concept of lagging coefficient method in the Beam Warming Method	07
Q.2	(a) (b)	Explain physical problem of isentropic flow over nozzle. Explain the organization of Navior Stokes equation code for the supersonic viscid flow over the flate plate.	07 07
		OR	
	(b)	Discuss the calculation of step size in space and time for flow over flate plate.	07
Q.3	(a) (b)	Explain the MacCormack subroutine for a flat plate. Explain purely subsonic flow through the CD nozzle. Also explain the boundary conditions for the same.	
		OR	
Q.3	(a) (b)	Briefly explain the nozzle shape and initial conditions for a CD nozzle. Explain Approximate factorization in multidimensional problem.	
Q.4	(a) (b)	Explain Godunov approach. Explain flux vector splitting and state the conditions which improve performance of the numerical scheme.	
		OR	
Q.4	(a)	Discuss the causes of development of the upwind method specify the advantages and disadvantages of the schemes.	07
	(b)	Explain TVD and flux limiters in brief.	07
Q.5	(a) (b)	Explain the concept of additional considerations for implicit method. Discuss upwind scheme in detail. Briefly state numerical forms of Euler equation.	07 07
		OR	
Q.5	(a) (b)	Discuss Adaptive grids under grid transformation Explain error and stability analysis for 1D heat conduction equation.	07 07
