GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VIth EXAMINATION - SUMMER 2015

Subject Code: 160202Date:04/05/Subject Name: Automobile Heat TransferTotal MarTime: 10.30AM-01.00PMTotal MarInstructions:Total Mar				
Q.1	(a)	Derive the generalized equation for steady heat conduction in 3-dimensional Cartesian coordinates.	07	
	(b)	Explain the concept of critical thickness of insulation and derive its equation for cylinder with usual notations.	07	
Q.2	(a)	Explain the following terms.(i) Efficiency of fin (ii) Effectiveness of fin (iii) Biot number	07	
	(b)	Derive the expression for fin efficiency for a fin insulated at the tip	07	
	(b)	OR A rod of 10 mm diameter and 80 mm length with thermal conductivity 16 W/m-deg protrudes from a surface at 160°C. The rod is exposed to air at 30°C with a convection coefficient of 25 W/m ² -deg. How does the heat flow from this rod get affected if the same material volume is used for two fins of the same length? Assume short fin with end insulated.	07	
Q.3	(a)	Derive Von-Karman integral momentum equation for hydrodynamic boundary layer over a flat plate.	07	
	(b)	Write short notes on the following: (a) Absoptivity, (b) Grey body, (c) Intensity of radiation and (d) Black body.	07	
		OR		
Q.3	(a)	Explain heat exchanger effectiveness, fouling and NTU.	07	
	(b)	State and explain Stefan Boltzmann law. Derive an expression for total emissive power of a Black body.	07	
Q.4	(a)	Using Buckingham's π theorem , show that for forced convection Nu = Φ (Re , Pr)	07	
	(b)	Explain the types of condensation. Mention some applications and unique features of boiling and condensation.	07	
		OR		
Q.4	(a)	Discuss the various regimes of boiling and explain the condition for the growth of bubbles. What is the effect of bubble size on boiling?	07	

(b) A flat plate 1m x 1m is placed in a wind tunnel. The velocity and temperature of free stream air are 80 m/s and 10°C respectively. The flow over the whole length of the plate is made turbulent by turbulizing grid placed upstream of the plate. Make calculation for the following parameters :

(a) thickness of hydrodynamic boundary layer at trailing edge of the plate (b) heat flow from the surface of the plate The plate is maintained at 50°C and use the following thermo-physical properties of air $\rho = 1.25 \text{ kg/m}^3$; k = 0.022W/m-deg; v = 14.15x 10⁻⁶ m²/s; C_p = 1000J/kgK

- Q.5 (a) Derive the relationship between effectiveness and number of transfer units for a parallel 07 flow heat exchanger.
 - (b) Calculate the surface area required for a heat exchanger which is required to cool 3600kg/hr of benzene ($C_p=1.74 \text{ kJ/kgK}$) from 75°C to 45°C. The cooling water ($C_p=4.18\text{kJ/kgK}$) at 15°C has a flow rate of 2500 kg/hr. Consider Single pass counter flow arrangement.

OR

- Q.5 (a) What are the functions of cap which is used on a radiator? Explain construction and 07 working of a radiator cap.
 - (b) Write a short on Radiator used in Car including construction, working and application. 07
