Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI • EXAMINATION - SUMMER 2015

Su	bject	Code: 160505			Date: 12/05/202	15		
Ti	me: 10	0.30am-01.00p	ter Aided Proce m	ss Synthesis	Total Marks:	70		
Ins	struction 1. 2. 3.	Attempt all questi Make suitable ass	ions. sumptions wherever ht indicate full mark	=				
Q.1	(a) (b)	Discuss the Engineering Ethics briefly. Mention the steps involved in product and process design.						
Q.2	(a) (b)	Explain the five steps procedure for construction of Attainable region. List the heuristics for determining favorable sequence of distillation operation. OR						
	(b)	Draw the various possible configurations for ternary distillation.						
Q.3	(a) (b)							
	, ,	Stream	Source temperature, °F	Target temperature, °F	M*Cp, btu per hour °F			
		<u>C1</u>	120	235	2			
		C2	180	240	4			
		H1 H2	260 250	160 130	3 1.5			
		П2	230	OR	1.3			
Q.3	(a) (b)	Describe Transshipment model briefly. Explain the generalized rules for stream splitting on both sides of the pinch to satisfy MER requirements. 07						
Q.4	(a)	-	Compare forward heat integration and reverse heat integration in distillation 07 with necessary figure.					
	(b)		ne: Approach temperature, Threshold approach temperature, Optimum 07 oach temperature, Minimum approach temperature OR					
Q.4	(a) Calculate the number of possible sequences of ordinary distillation column for number of product and draw only direct and indirect sequence.							
	(b)	Discuss the positioning of heat pump. 07						
Q.5	(a) (b)	Compare overlapping operation and non-overlapping operation. Write briefly on Multiple Product batch plants.						
Q.5	(a) (b)	Compare various transfer policies. Discuss the positioning of heat engine. 0						
