Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI• EXAMINATION-SUMMER 2015

51	ubje	ct Code: 161004 Date:14/05/2015	
Sı	ubje	ct Name: VLSI Technology and Design	
Ti	ime:	10:30 am to 01:00 pm Total Marks: 70	
Ins	struc	tions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
Λ1	(-)	3. Figures to the right indicate full marks.	07
Q.1	(a)	Do as Directed: 1. Draw Voltage Transfer Characteristics of Enhancement mode and Depletion mode	07
		MOSFETs.	
		2. Is PMOS is subjected to substrate-bias effect (Body effect) in CMOS Inverter?	
		Justify your answer.	
		3. Briefly describe yield and manufacturability.	
		4. Define Positive photoresist and negative photoresist.	
		5. As we reduce V_{DD} of CMOS inverter, write $V_{DD (Min)}$ for which CMOS inverter	
		operates correctly? 6. Draw general layout of an H-tree clock distribution network.	
		7. Discuss controllability in brief.	
	(b)	Discuss MOSFET capacitances in brief.	07
0.1		•	
Q.2	(a) (b)	Discuss guideline for avoiding of CMOS Latch-Up. Derive the expression for τPHL for CMOS Inverter for ideal step as an input to CMOS	07 07
	(D)	Inverter.	U/
		OR	
	(b)	Discuss VLSI Design flow in detail.	07
Q.3	(a)	Draw the CMOS Inverter circuit and Voltage Transfer Characteristic (VTC) for different	07
Q.S	(a)	operating regions of the nMOS and pMOS transistors. Derive critical voltage points	07
		$V_{OH}, V_{OL}, V_{IL}, V_{IH}$.	
	(b)	Consider a CMOS Inverter circuit with the following parameters:	07
		V_{DD} =3.3V, $V_{TO,n}$ =0.6V, $V_{TO,p}$ = -0.7V, k_n =400 microAmp/V ² , k_p =160 microAmp/V ² .	
		Calculate the noise margin of the circuit. OR	
Q.3	(a)	Draw the Inverter circuit with Resistive Load Inverter. Derive critical voltage points VOH,	07
Q.J	(a)	VOL, VIL and VIH for Resistive Load Inverter circuit.	07
	(b)	Consider a resistive-load inverter circuit with VDD =5 V, Kn' =10 MicroA/V ² , VTO=0.8V,	07
		RL=400kΩ,and W/L=2.Calculate the critical Voltages (VOH,VOL,VIL and VIH) on the	
		VTC and find the noise margins of the circuit.	
Q.4	(a)	Draw the energy band diagram of MOS structure at surface inversion and derive the	07
	()	expression for the maximum possible depth of the depletion region.	
	(b)		07
		plotted as a function of output voltage.	
0.4	(a)	OR Discuss CMOS SR latch circuits based on NOR2 actor	07
Q.4	(a) (b)	Discuss CMOS SR latch circuits based on NOR2 gates. Discuss Ad hoc testable design techniques.	07 07
	` '		
Q.5	(a)	Discuss basic principles of Pass transistor circuits and Logic "1" transfer.	07
	(b)	Explain domino CMOS logic. OR	07
Q.5	(a)	Describe the process of fabrication of the NMOS transistor.	07
٧.٠	(b)	Explain Built-in Self Test (BIST) techniques with necessary diagrams.	07
	(-)	******	