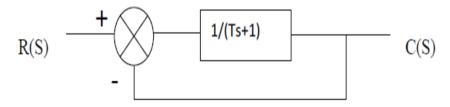
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI EXAMINATION - SUMMER-2015


Subject Code:161905 Date: 12/05/2015

Subject Name: CONTROL ENGINEERING

Time:10:30 am to 01:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 **Q.1** What do you understand by Transient and steady state response and hence (a) discuss the various types of input test signals used for time response analysis of a control system
 - Define transfer function of a linear time invariant control system and hence **07** discuss its properties. Also discuss the role of Laplace Transforms in system
- With the help of suitable examples discuss open loop and closed loop control **07 Q.2** (a) system
 - Consider a first order system as shown in Figure below, for a unit step input to 07 the system, determine the output for one time period in the transient zone

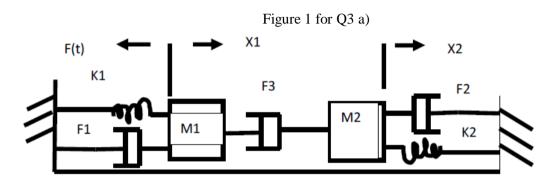
OR

- Define the various terms used for specifying the transient-response of a control 07 **(b)** system Explain them on the response curve of any one type of test signal
- What is meant by signal flow graph? Define the various terminologies associated Q.3 (a) **07** and hence discuss the Mason's gain formula to determine the overall gain.
 - Describe force-voltage analogy and force- current analogy as **07 (b)** applied to electrical analogies for mechanical systems.

OR

- **Q.3** Determine the transfer function X1/X2 for the physical system shown in figure 1 **07** (a) below.
 - With the help of fundamental differential equations draw the basic block diagram **07 (b)** and hence derive the transfer function for a Armature controlled DC motor
- 0.4 For a unity feed back system the open loop transfer function is given as follows. 10 (a) Sketch root locus for $0 < K < \infty$. at what value of K the system becomes unstable You may consider breakaway point as -0.8981.

$$G(s) = \frac{K}{s(s+2)(s^2+6s+25)}$$


Define stability of a control system? **(b)**

04

OR (a)

Determine the stability of a closed loop control system with characteristic 07 **Q.4** equation $s^5+s^4+2s^3+2s^2+11s+10=0$

	(b)	With the help of a neat sketch explain the working of a pneumatic nozzle flapper amplifier and hence determine its transfer function	07
Q.5	(a)	Compare and contrast pneumatic system with hydraulic system	07
	(b)	Write a short note on Programmed logic controller and discuss its application	07
		to any engineering system	
		OR	
Q.5	(a)	With the help of a neat sketch explain the working of a Automatic controller and	07
		discuss the various terminology used	
	(b)	With the help of a sketch explain a pneumatic proportional plus integral	07
		controller and derive its transfer function	
