

1

GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER VI EXAMINATION – SUMMER 2015

Subject Code: 163401Date: 01/05/2015Subject Name: Finite Element Analysis in Manufacturing Engineering Time: 10.30am-01.00pmTotal Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.			
	3.		
Q.1	(a)	Derive the expressions for nodal load vector in a two noded bar element due to (a) Body force, (b) Surface load.	07
	(b)	Explain the penalty approach of imposing boundary conditions.	07
Q.2	(a) (b)	 Explain the elimination approach of imposing boundary conditions. Explain the following terms clearly (i) Nodes, primary nodes, secondary nodes and internal nodes (ii)Local coordinates, global coordinates, natural coordinates and area coordinates. 	07 07
	(b)	OR Discuss shape function with respect to one dimensional problem.	07
Q.3	(a)	Explain Rayleigh-Ritz method with example.	07
2.0	(b)	 Consider the thin (steel) plate in fig(1) the plate has a uniform thickness t = 1 in., young's modulus E = 30 x 10⁶ psi, and weight density ρ = 0.2836 lb/in³. In addition to its self-weight, the plate is subjected to a pint load P = 100 lb at its mid-point. 1) Model the plate with two finite elements. 2) Write down expressions for the element stiffness matrices and element body force vectors. 3) Assemble the structural stiffness matrix K and global load vector F. 4) Using the elimination approach, solve for the global displacement vector-Q. 5) Evaluate the stresses in each element. 6) Determine the reaction force at the support. 	07
Q.3	(a)	Derive the stiffness matrix for a beam element.	07
-	(b)	Derive the expression for consistent load vector due to self-weight in a CST	07
Q.4	(a) (b)	element. Explain the properties of stiffness matrix K. Explain the potential energy approach with all force terms. OR	07 07
Q.4	(a) (b)	 An axial load P = 300 x 10³ N is applied at 20°C to the rod as shown in fig(2). The temperature is then raised to 60°C. 1) Assemble the K and F matrices. 2) Determine the nodal displacements and element stresses. Explain Timoshenko Beam Theory. Discuss its advantages and disadvantages. 	07 07
05			
Q.5	(a) (b)	Explain the axisymmetric FEA of a pressure vessel. Explain the FEA simulation of solidification of castings. OR	07 07
Q.5	(a) (b)	Explain the application of FEM in various metals forming process. Explain the FEA simulation of metal cutting process.	07 07

Q.3 (b) Fig.-(1)

Q.4 (a) Fig.-(2) OR
