Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITYBE - SEMESTER-VII • EXAMINATION – SUMMER • 2015

	•	ect code: 170102 Date: 08/05/2015	5
	Time	ect Name: Theory of Heat Transfer e: 02.30pm-05.00pm Total Marks: 70)
	HIST	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a) (b)	Derive general heat conduction equation in Cartesian coordinates A furnace wall is made up of three layers of thickness 250 mm, 100 mm and 150 mm with thermal conductivity of 1.65 W/m-K , K_b and 9.2 W/m-K respectively. The inside is exposed to gases at 1250 °C with a convective heat transfer coefficient 25 W/m²-K and the inside surface is at 1100 °C . the outside surface is exposed to air at 25 °C with convective heat transfer coefficient 12 W/m²-K. Determine (i) the unknown thermal conductivity K_b , (ii) the overall heat transfer coefficient, (iii) All surface temperatures. Draw Electrical analogy for given system.	07 07
Q.2	(a)	Derive equations of temperature distribution and heat dissipation for fin non-insulated at tip.	07
	(b)	A 1m long, 5 cm diameter, cylinder placed in an atmosphere of 40 °C is provided with 12 longitudinal straight fins ($k = 75 \text{ W/m-K}$), 0.75 mm thick. The fin protrudes 2.5 cm from the cylinder surface. The heat transfer coefficient is 23.3 W/m²-K. Calculate the rate of heat transfer if the surface temp. of cylinder is at 150 °C.	07
	(b)	OR Derive and expression for "Critical thickness of insulation" for a pipe.	07
Q.3	(a) (b)	Explain lumped heat capacity method and state its assumptions. A titanium alloy blade of an axial compressor for which $k=25$ W/m-K, $\rho=4500$ kg/m ³ and Cp = 520 J/kg-K is initially at 60 °C. The effective thickness of the blade is 10 mm and it is exposed to gas stream at 600 °C, the blade experiences a heat transfer coefficient of 500 W/m ² -K. Estimate the temperature of blade after 1, 5, 20 and 100 seconds.	07 07
Q.3	(a) (b)	Define Re, Nu, Pr. Explain their importance in convection heat transfer. A horizontal fluorescent tube which is 3.8 cm in diameter and 120 cm long stands in still air at 1 bar and 20 °C. If the surface temperature is 40 °C and radiation is neglected, what is heat transfer rate by convection? Use $\overline{N}_u = 0.53 \; (Gr.Pr)^{0.25}$	07 07
Q.4	(a)	How are the heat exchangers classified?	07

	(b)	In a shell and tube heat exchanger, 5.795 kg/s of oil flows through the shell side. The oil enters at 101 $^{\circ}$ C and leaves at 38 $^{\circ}$ C. Water flows in the tubes, entering at 32 $^{\circ}$ C and leaving at 49 $^{\circ}$ C. In addition, $Cp_{oil} = 2282$ J/kg.K and $U = 416$ W/m²-K . Determine number of tubes, if outer diameter of tubes is 100 mm, length of each tube is 1.9 m and take correction factor as 0.88 OR	07
Q.4	(a)	Define Heat Exchanger Effectiveness & explain its significance.	07
ζ	(b)	Draw and Explain boiling curve for water. Explain Nucleate boiling.	07
Q.5	(a)	Define and explain Radiation shield and Radiation shape factor	07
	(b) Using dimensional analysis, obtain a general form of equation for force Convective heat transfer.		07
		OR	
Q.5	(a)	State & explain Kirchoff's identity. What are conditions under which it is Applicable	07
	(b)		07
