Seat No.:	Enrolment No.

Subject Code:170307

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VII• EXAMINATION-SUMMER 2015

Date:06/05/2015

Su	bject	Name: Image Processing	
		30pm-5.00pm Total Marks: 7	70
Ins	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain the main features of human eye and their functions relevant to image formation in the eye.	07
	(b)	Explain the transformation $t=s^2$, where "s" is intensity of a pixel of the input image $f(x, y)$ and "t" is the intensity of the corresponding pixel in the output image $g(x,y)$. Also give an example of a 3x3 input $f(x, y)$ and the corresponding output $g(x, y)$ for the given transformation.	07
Q.2	(a)	Consider a sequence of intensity values of pixels in a 3x3 image {2.2, 4.7, 1.0, 7.4, 0.2, 3.4, 6.6, 5.8, 4.1}. Give a 3-bit per pixel representation of the given sequence. Also calculate the mean squared quantization error due to this representation of the given sequence.	07
	(b)	Plot the histogram of the following sequence of intensity values of pixels in a 3x3 image, {3, 2, 3, 7, 6, 6, 7, 2, 2}, considering the integer values from 0 to 7. Give a boundary (threshold) condition for classification of the pixels into two different classes based on their values. OR	07
	(b)	Explain the relation of the illumination $i(x, y)$, the radiance of surface $r(x, y)$, and the corresponding pixel intensity $f(x, y)$, in an image. Explain the implementation of homo-morphic filters based on the relation.	07
Q.3	(a) (b)	Explain various Neighborhood processing methods for edge detection in images. In a 16x16 binary image, $f(x, y) = 1$, for (x, y) equal to $(0, 0)$, $(2, 1)$, $(4, 2)$, $(6, 3)$, $(8, 4)$, $(10, 5)$, $(12, 6)$, $(14, 7)$; and $f(x, y) = 0$, otherwise. Link the pixels with value '1' to a particular geometrical shape. Also give steps of the algorithm for the same.	07 07
		OR	
Q.3	(a) (b)	Explain region growing for image segmentation with an example. Give equations for DFT of MxN image and its inverse. Explain any two properties of DFT.	07 07
Q.4	(a)	Explain the procedure to derive the KL transform of a set of images of size NxN. Also explain the orthogonal relations of its basis functions.	07
	(b)	Consider a 3 pixel thick "L" shape in a binary image represented by pixel values '1' and all other pixel value are '0'. Give a method based on morphological operations to convert all '1' from the horizontal section of the "L" shape to '0', and preserving all '1' in the vertical section. OR	07
Q.4	(a) (b)	Explain the hit-or-miss transform and its applications in image processing. Explain LZW coding and its applications in image processing.	07 07
Q.5	(a)	Explain various steps of JPEG encoding giving a functional block diagram.	07

(b) There are four intensity values in an image namely {a, b, c, d} and their corresponding probabilities are {0.5, 0.2, 0.1}, respectively. Derive an arithmetic code for a length-four sequence "a b c a". State whether the arithmetic coding is uniquely decodable or not and why?

OR

- **Q.5** (a) Define the nth moment of a sequence of pixel intensity values. Calculate 1^{st} , 2^{nd} and 3^{rd} moments of the 4x4 image, $f(x, y) = (-1)^{(x+y)}$.
 - (b) Define the Haar transform for images. Calculate the Haar transform of the 8x8 image, $f(x, y) = 1 + (-1)^{(x+y)}$.
