GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – SUMMER • 2015

	S	Ibject Code: 170804 Date: 04/05/2015 Ibject Name: Discrete Time Signal Processing Date: 04/05/2015	
	Ti In	ime:02.30pm-05.00pm Total Marks: 70 structions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	
Q.1	(a)	Write major classification of signal in detail also explain Energy and Power signal with the help of example.	07
	(b)	State and prove any three properties of Z-transform.	07
Q.2	(a)	Check whether the following system are linear and time invariant. F[x(n)] = n[x(n)]2 F[x(n)] = a[x(n)]2 + bx(n)	07
	(b)	Compute the convolution of the following signal. $x[n] = {}^{\alpha^n}_{0} {}^{-3 \le n \le 5}_{\text{otherwise}} \qquad h[n] = {}^1_{0} {}^{0 \le n \le 4}_{\text{otherwise}}$	07
		OR	
	(b)	Define periodic and unpatriotic signal. Determine whether the given sequence is periodic or not, if periodic determine fundamental period.	07
		$x(n) = \sin\left(\frac{1}{7}\right)$	
Q.3	(a) (b)	Determine Z-transform and ROC of $x[n] = 2^n u(n) - 3^n u(n)$ Determine the IDFT of $X(k) = \{3, 2 + j, 1, 2 - j\}$	07 07
Q.3	(a)	Find inverse Z- transform of $X(z) = \frac{Z+3Z^{-1}}{(1+Z^{-1})(1+Z^{-1})(1-Z^{-1})}$ also verify result for	07
	(b)	$0 \le n \le 3$. Given $x(n) = a^n u(n)$. Determine Fourier transform $X(w)$ of $x(n)$ Determine discreet Fourier transform $X(k)$, How $X(k)$ relate to $X(w)$	07
Q.4	(a)	Find convolution using DFT and IDFT method of sequence $x1(n) = \{1,1,2,2\}$ $x2(n) = \{1,2,3,4\}$	07
	(b)	Use butterfly structure of DIF and Calculate output for each stage for given sequence. $x[n] = \{1,2,2,1,0,0,0,0\}$	07
		OR	
Q.4	(a)	Draw the butterfly diagram of 8 point Inverse decimation in time FFT and use it to obtain the original sequence $x(n)$. $X(K) = \{20, -5.828 - j2.414, 0, -0.172 - j0.414, 0, -0.172 + j0.414, 0, -5.828 + j2.414\}$	07
	(b)	Explain any three properties of DFT. What is twiddle factor of the DFT?	07
Q.5	(a)	Design a digital chebyshev filter to satisfy the constrains. Using bilinear transformation and assuming T = 1s. 0.707 $\leq \frac{ H(e^{j\omega}) \leq 1 \ 0 \leq \omega \leq 0.2\pi}{ H(e^{j\omega}) \leq 0.1 \ 0.5\pi \leq \omega \leq \pi}$	07

(b) The desired response of a low-pass filter is given determine $Hd(e^{j\omega})$ for M = 7 using 07

1

hamming window.

$$Hd(e^{j\omega}) \stackrel{e^{-sj\omega}}{=} \stackrel{-\frac{s\pi}{4} \le \omega \le \frac{s\pi}{4}}{0} \stackrel{\frac{3\pi}{4} \le \omega \le \pi}{\overset{\delta\pi}{=}}$$

OR

- Q.5 (a) Design digital filter using bilinear transformation for following analog transfer function. 07 $H(s) = 1/(s^2 + \sqrt{2} s + 1)$ Obtain transfer function H(Z) of digital filter assuming 3db cutoff freq. w_p 150 Hz and sampling freq. 1.28 KHz.
 - (b) Determine coefficient of linear phase FIR filter of length N = 15 which has symmetrical unit 07 sample response and a freq. response that satisfies condition.

$$H\left[\frac{2\pi k}{15}\right] = {}^{1}_{\substack{0.4 \ k=4\\ 0 \ k=5,6,7}} {}^{1}_{k=0,1,2,3}$$
