Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII • EXAMINATION - SUMMER 2015

Subject Code: 170901 Date:01/05/2015

Subject Name: Interconnected Power System

Time: 02:30 to 05:00 Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1	(a)	Briefly descri	be function:	s of a Load	Dispatch Centre.	07
	(b)	A four bus sys in the followin (1) Bus In (2) Primit	tem is shown ag table. Deri acidence Matri ive Admittan matrices un	n fig. (a). Im ve rix A ce Matrix Y nique? Expla	pedances of various b	07
			Sr. No.	Elemen	Impedance in	
			1	1-2	p.u.	
			1		j0.025	
			3	1-4 2.G	j0.04	
				2-G	j0.02	
			4	2-3	j0.05	
			-			
			5	3-G	j0.01	
			5	3-G 3-4	j0.01 j0.025	

				25.					4	
				-	6∟-75°	8 L		8 ∟104°		
				-	L 104°	16∟		8 ∟ 104°		
				8	∟104°	8 ∟	104°	16∟-75°		
			Bus powers and voltages are given below.							
	te.		Bu	P_G	Q		PD	Q _D	Bus Voltage	
			1	Unspecifie d	Unspe d		1.0	0.5	1.0 +j 0 (Slack Bus)	
	- 1		2	1.5	Unspe d	cifie	0	0	V =1.03	
			3	0	0		1.2	0.5	Unspecified	
			Problem	Form Jacobian Matrix and the set of equations for solution of Load Flow Problem for first iteration of Newton-Raphson method. (All values are in p.u. with appropriate base values)						
		(b)	Explain l	Fast Decouple	ed Load	Flow		od		07
		(5)	Enpluin I	ust Decoupi	Ju Louu	11011	meme	70.		07
	Q.3	(a)	Explain how active and reactive power flows over transmission lines can be calculated at the end of a load flow study.							07
		(b)	Explain optimal generation scheduling considering transmission losses.							
	0.3	(a)	OR (a) Explain Kran's method for calculation of loss coefficients							
	Q.3 (a) Explain Kron's method for calculation of loss coefficients. (b) In a system with two plants, the incremental fuel costs are given by									07
			$\begin{split} (IC)_{l} = 0.01P_{G1} + 20 & Rs/MWh \\ (IC)_{2} = 0.015 \ P_{G2} + 22.5 \ Rs/MWh \end{split}$ The system is running under optimal scheduling with $P_{G1} = P_{G2} = 100 \ MW.$ If $(\partial P_{L}/\partial P_{G2}) = 0.2$, find the penalty factors of both the plants and $(\partial P_{L}/\partial P_{G1})$							
	Q.4	(a)	Derive per unit swing equation of a synchronous machine. Show how machines swinging coherently can be reduced to a single machine.							
		(b)								07
				0.18 p.u Determine (1) the kinetic energy stored in the rotor and (2) the acceleration of the generator.						
			If this acceleration is maintained for 7.5 cycles, calculate the change in rotor angle and speed in rpm at the end of this duration.							
						O				
	Q.4	(a)	limit can	be enhanced	?			(E)	steady state stability	07
1 4	Q.4	(b)	network. each circ	The power of uit is 100 M its is sudden	W. The	ding the is ched	to the trans out.	steady st mitting 8 Determin	generator to a large ate stability limit for 60 MW when one of he using equal area main stable or not.	07

Q.5	(a)	Briefly discuss the concept of "Control Area" for Automatic Load Frequency Control and hence explain Two Area Load Frequency Control.							
	(b)	Prove that voltage drop across a line is $\Delta V = \frac{R \cdot P + X \cdot Q}{V}$ Where R and X are Resistance and Series Reactance of lin respectively whereas P and Q are active and reactive power delivere over the line.							
		OR							
Q.5 (a)	(a)								
	(b)	Bus impedance matrix for a three bus system is given below.	07						
