Seat No.:	Enrolment
T	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII • EXAMINATION - SUMMER • 2015

Subject Code: 171503 Date:12/05/2015

Subject Name: Resource Optimization Techniques

Time:02.30pm-05.00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define Operation Research. Where and how it is useful in industry? Give examples.
 - (b) Explain scope and phases of O. R. Methods with examples.
- Q.2 (a) What is Linear programming? State the applications of it and also discuss its advantages in brief.
 - (b) Find an initial basic feasible solution to the following T.P. using Vogel's approximation method(test optimality also)

Destinations

		1	2	3	4	Availability
	A	7	2	5	5	40
Origins	В	4	4	6	5	25
	C	5	3	3	2	20
	D	4	-1	4	2	30
Requirem	ent	30	35	25	25	

OR

- **(b)** What is the significance of Vogel's Approximate Method? What is optimality test? How stepping stone method is different from earlier?
- Q.3 (a) How a problem is formulated? How a model is constructed? How solution is derived?

(b) Solve the following sequential problem by graphical and arithmetic method:

job	Α	В	C	D	E	X	Y	Z
Machine-A	7	6	24	18	17	13	11	6
Machine-B	8	12	14	10	22	9	5	23

OR

- **Q.3** (a) Explain Hungarian Method with a suitable example.
 - **(b)** Explain in short:
 - (a) feasible solution, (b) basic feasible solution
 - (c) Optimum solution, (d) non-degenerate feasible solution.

1

07

07

07

07

07

07

07

07

07

- Q.4 (a) What do you understand by Travelling Salesman Problem? Explain with a suitable example.
 - **(b)** Explain the Kan DALL'S notation to represent a queuing model. Also explain Balking and Jockeying in queuing.

OR

- Q.4 (a) Differentiate slack and surplus variables. What is degeneracy? What is the role of duality in LPP? 07
 - **(b)** Solve the following LPP.

Maximize z=4x1+5x2-3x3, Subject to x1+x2+x3=10, X1-x2>=1, 2x2+3x2+x3<=40, X1,x2,x3>=0.

- **Q.5** (a) What do you understand by Group Replacement Policy? Explain staffing problem with suitable examples.
 - **(b)** What are causes of replacement of a machine? How it can solve with OR? OR

07

07

07

07

07

07

07

- **Q.5** (a) Explain the following terms related to Game theory:
 - A. Game,
 - B. mixed strategy,
 - C. Two person's zero sum game.
 - D. saddle point.
 - **(b)** Solve the following Game:

		Player-B			
	2	1	2	3	4
Player-A	0	-7	-4	1	2
	1	5	8	-3	2
