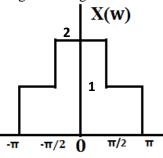
Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – SUMMER • 2015

Subject Code: 171704 Subject Name: Digital Signals and Systems Time: 02:30 pm - 05:00 pm		Date: 04/05/2015 Total Marks: 70	
Q-1 (a)	Discuss the time domain behaviour of a discrete time s location.	ystem from the pole	07
(b)	For a given discrete system, check whether they at (1) Time variant / Time invariant (2) Stable / Unstable (3) Linear / Nonlinear (4) Causal / Anti causal (5) Static / dynamic • Y(n)= a x(n) + b	е	05
(c) Q-2 (a)	Find out the power of A e^{jwn} . Find out the linear convolution of two sequences $X(n) = \{1, \underline{2}, 1, -1\}, h(n) = \{1, 2, 3, 1\}$		02 07
(b)	Find out solution of second order difference equation Y(n) - 3 Y (n-1) - 4 Y(n-2) = X(n) + 2 X(n-1) when the $X(n) = 4^n u(n)$	e input sequence is	07
(b) Q-3 (a)	or Explain with suitable example recursive and nonro Prove the following properties of z transform. 1. Convolution	ecursive system.	07 06
(b)	2. Initial value theorem Find out inverse z transform of $X(z) = \frac{1+z^{-1}}{1-z^{-1}+0.5z^{-2}}$		08
Q-3 (a)	OR Prove the following properties of z transform. 1. Perseval's relationship 2. Differentiation		06
(b)	 Find out Z transform of following signal 1. X(n)=-n aⁿu(-n) 2. X(n)=n² u(n) 		08
Q-4 (a)	Explain symmetry properties of DTFT.		07


- (b) Compute 8 point DFT using decimation in time using radix 2 algorithm. 07 $X(n) = \cos \pi n$ OR Q-4 (a) Compute 8 point DFT using decimation in frequency radix-II algorithm. 07 $X(n) = \sin \frac{\pi}{2} n$
 - (b) Determine the direct form I, form II and cascade realization for following 07 systems

$$Y(n)=x(n)-x(n-1)+2 x (n-2) -3 y(n-1)+4y(n-2)$$

- **Q-5 (a)** Compute the fourier transform of the following signals and plot the spectra. **07** 1. X(n) = u(n) - u(n-3)2. $X(n) = a^n u(n)$
 - $2. \quad X(n) = a^n u(n)$

OR

Q-5 Determine and sketch magnitude and phase spectra of the following periodic signals.

14

- 1. $\cos (2\pi n/3) + \sin (2\pi n/5)$
- 2. $x(n) = 4 \sin ((\pi (n-2))/3)$