GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER- 7th EXAMINATION - SUMMER 2015

Su	bject	Code: 172007 Date:06/05/2	Date:06/05/2015 Total Marks: 70	
Su Tir Inst	bject ne: 0 ructio	2.30PM-05.00PM Total Marks		
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	For the speed control system the plant model is derived as below. $\dot{x} = Ax + Bu$ $A = \begin{bmatrix} -1 & 1 \\ -1 & -10 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Evaluate the response of this system to a unit step input under zero initial conditions	07 1	
	(b)	A feedback system has a closed loop transfer function $\frac{Y(s)}{R(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$ Construct the state model for this system where the system matrix A is a diagonal matrix.	07	
Q.2	(a)	The open loop transfer function of the uncompensated system is $G(s) = \frac{k}{s(s+2)}$ It desired to compensate the system so as to meet the following transient response specifications Damping ratio=0.707 Settling time, ts < 5 sec Velocity error kv>=4. Design a cascade lag compensator.	07	
	(b)	Explain the design step required for the lag - lead compensator design using bode plot.	07	
	(b)	Consider a Unity-feedback type-2 system with open loop transfer function. $G(s) = \frac{k}{s2}$ It is desired to compensate the system so as to meet the following transient response specification Settling time, <4sec, Peak Overshoot for step input $\leq 20\%$ Find out gain K and write loop transfer function of cascade compensated sysem.	07	
Q.3	(a)	Consider a type-I unity feedback system with an open-loop transfer function. $G(s) = \frac{k}{s(s+1)}$	07	

It is desired to have the velocity error constant kv=10

Phase Margin of the system be at least 45deg.

Design a suitable cascade Lead compensator using bode plot for the above system.

(b) Given a z.o.h. in cascade with $G(s) = \frac{(s+2)}{(s+1)}$ find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5

OR

- Q.3 (a) Give difference between phase lead, phase lag and phase lag-lead Compensation. 07
 - (b) Determine the range of sampling interval T that will make the system stable. 07

Q.4 (a) Find the inverse *z*-transform sequence of the following function:

$$_{1)x(z) = \frac{z^2 + z}{z^2 - 3z + 4} }$$

$$_{2)} x(z) = \frac{z^2 + z}{(z^2 - 1.13z + 0.64)(z - 0.5)}$$

(b)

A regulator system has plant

 $\vec{x} = \begin{bmatrix} 0 & 1\\ 20.6 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} \mathbf{u}$

y=[1 0]x

second.

Design a control law u= -kx. So that the closed-loop system has eigen values at $-1.8 \pm j2.4$.

OR

- Q.4 (a) Define controllability and observability for the second order system described 07 by the following set of differential equations. $\dot{x1}(t) = -2x1(t) + 4x2(t)$ $\dot{x2}(t) = 2x1(t) - x2(t) + u(t)$
 - (b) Explain the stability analysis of sampled Data control system. 07
- Q.5 (a) Find the range of k for system stability using jury's stability criterion for the 07 characteristic equation is given below,

 $P(z) = z^2 + (0.368k - 1.368)z + 0.368 + 0.264k = 0$

(b) Discuss the effect of adding a pole on shape of the root locus. Also discuss the of effect of addition of a zero in reshaping the root locus.

OR

Q.5	(a)	Explain the pole placement technique using control using state feedback	07
		controller.	
	(b)	State an Ackermann's formula. Show the Computation of State	07

(b) State an Ackermann's formula. Show the Computation of State Controllability and Observability using it. What is its limitation?

07

07