	1 .
Hnro	lment
1 7111 ()	

Date:01/05/2015

Seat No.:	
No	

Subject Code: 172401

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII • EXAMINATION - SUMMER • 2015

Ti	•	Attempt all questions.Make suitable assumptions wherever necessary.Figures to the right indicate full marks.	70
Q.1	(a) (b)	Explain SISO and MIMO model of the control system with block diagram. What is feedback control? Explain the closed loop of controlled rectifier with necessary circuit diagram.	07 07
Q.2	(a) (b)	State capacitor charge balance principle and explain its use in buck converter. Explain the working of the buck-boost converter with neat circuit diagram and necessary waveforms. Explain the graph for DC conversion ratio $M(D)$ with duty cycle. OR	07 07
	(b)	Obtain transfer function of separately exited DC shunt motor operated with armature voltage control.	07
Q.3	(a) (b)	Develop State-space model of the Buck-Boost converter. Explain Controllability and Observability of the system with suitable example.	07 07
Q.3	(a) (b)	OR Explain the normalization of model with respect to frequency by suitable example. Write a brief note on small signal modeling of buck converter.	07 07
Q.4	(a) (b)	Discuss about non-linearity in DC-DC converters. Obtain state space model of parallel R-L-C circuit.	07 07
Q.4	(a) (b)	OR Write a short note on state space averaging method for DC-DC converter. Explain DC transformer model of DC-DC converter with suitable example.	07 07
Q.5	(a)	What do you mean by small signal approximation? Explain with appropriate example.	07
	(b)	Draw and explain the modeling of PWM inverter.	07
Q.5	(a) (b)	OR What is canonical circuit model? Explain the development of canonical circuit model based on physical arguments. Discuss the single zero response with respect to Bode plot with illustration.	07 07
