GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII • EXAMINATION – SUMMER • 2015

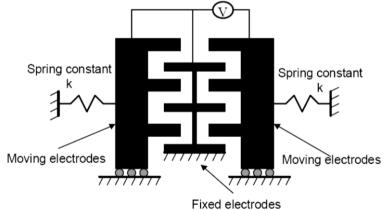
Subject Code: 182008

Subject Name: MEMS & Nanotechnology

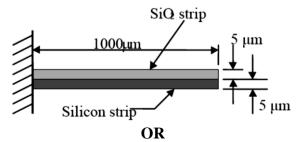
Time:10.30AM-01.00PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (i) Evaluate: "The change in the state of stress in a silicon diaphragm in a micro 07 pressure sensor results in a change of its natural frequency".
 (ii) Describe the popular micro actuation techniques used in micro devices


(ii) Describe the popular micro actuation techniques used in micro devices.

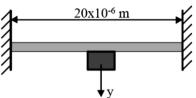
- (b) Explain the working and applications of different types of Micro 07 accelerometers. Also discuss the principles of damping used with their applications.
- Q.2 (a) Differentiate Biomedical and Biosensors. List the major technical issues to be 07 handled by BIOMEMS products.
 - (b) Explain the method used for growing silicon crystals.


07

OR

(b) Determine the voltage required to pull the moving electrode 10µm from the unstretched position of the spring for the comb driven actuator. The spring constant is 0.05 N/m. The comb drive is operated in air. The gap between the electrodes and the width of the electrodes are 2µm and 5µm respectively.

- Q.3 (a) What are the qualities desired for a substrate to be considered in Micro 07 fabrication? Explain with an example.
 - (b) A micro actuator described below is expected to operate with a temperature rise from 10^{0} C to 50^{0} C. Plot the movements of the free end of the actuator with respect to the range of temperature rise. Use a temperature increment of 10^{0} C. $E_{siO2} = 385$ GPa, $E_{si} = 190$ GPa, CTEsio₂ = 5e-7/ 0 C, CTE_{si} = 2.33E-6/ 0 C.



Q.3 (a) "Additive Fabrication processes are best suited for manufacturing at a micro or scale instead of the subtractive machining techniques". Justify. Also explain the

Total Marks: 70

need of a clean room for these techniques.

(b) A component of a MEMS structure (5gm) is attached to a strip of silicon. The equivalent spring constant is 18,240 N/m. The mass is pulled down by 5E-6 meter initially and is released. Find the natural frequency and maximum amplitude of vibration of the system. Also find the time required to break up the strip if a Force of F (t) = $5\cos \omega nt N$ is applied to the mass at time t>0. Assume that the material of the mass and the strip is silicon and the strip breaks at a deflection of 1mm. The vibration of the system begins when the system is at rest.

- Q.4 (a) Explain the diffusion process used for fabricating micro and nanostructures. 07 How is it different from Ion Implantation?
 - (b) "Carbon Nanotubes are the best candidates for sensing atomic scale biological 07 objects". Evaluate.

OR

- **0.4 (a)** Explain the importance of scaling in Nanostructures giving suitable example. 07 Write in brief: 07 **(b)** Chemical Vapour Deposition process • • Ion Implantation process 07 Q.5 **(a)** Explain the techniques used to make nanostructures. "Fracture and Creep in Nanostructures Temperature dependent 07 **(b)** are phenomenon". Evaluate. OR
- Q.5 (a) Differentiate between different types of microscopy techniques with emphasis 07 on characterizing the Nanostructures.
 - (b) What do you understand by 'Molecular Recognition'? Explain in brief in 07 context of Nanotechnology. How it is useful to the society at large?

07