GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (NEW)EXAMINATION – SUMMER 2015

Subject Code:2130002 Date: 06/06/2015 Subject Name:Advanced Engineering Mathematics			
Time:02.30pm-05.30pm Total Marks: 70 Instructions:			
11150	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a)	(1) Solve the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$.	04
		(2) Solve the differential equation $ye^{x}dx + (2y + e^{x})dy = 0$.	03
	(b)	Find the series solution of $(1 + x^2)y'' + xy' - 9y = 0$.	07
Q.2	(a)	(1)Solve the differential equation using the method of variation of parameter $y'' + 9y = \sec 3x$.	04
		(2) Solve the differential equation $(D^2 - 2D + 1)y = 10e^x$.	03
	(b)	Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$; $u(x,0) = 6e^{-3x}$.	07
	(b)	OR Find the series solution of $2x(x-1)y'' - (x+1)y' + y = 0; x_0 = 0$	07
Q.3	(b) (a)		07
X.C	()	Find the Fourier Series for $f(x) = \begin{cases} \pi + x; & -\pi < x < 0 \\ \pi - x; & 0 < x < \pi \end{cases}$	07
	(b)	(1) Find the Half range Cosine Series for $f(x) = (x-1)^2$; $0 < x < 1$.	04
		(2) Find the Fourier sine series for $f(x) = e^x$; $0 < x < \pi$.	03
Q.3	(a)	OR $\left(-\pi : -\pi < x < 0 \right)$	
C	()	Find the Fourier Series for $f(x) = \begin{cases} -\pi; & -\pi < x < 0 \\ x - \pi; & 0 < x < \pi \end{cases}$.	07
	(b)	(1) Find the Fourier cosine series for $f(x) = x^2$; $0 < x < \pi$.	04
• •		(2) Find the Fourier sine series for $f(x) = 2x; 0 < x < 1$.	03
Q.4	(a)	(1) Prove that (i) $L(e^{at}) = \frac{1}{s-a}$; $s > a$ (ii) $L(\sinh at) = \frac{a}{s^2 - a^2}$.	04
		(2) Find the Laplace transform of $t \sin 2t$.	03
	(b)	(1) Using convolution theorem, obtain the value of $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$.	04
		(2) Find the inverse Laplace transform of $\frac{1}{(s-2)(s+3)}$.	03
Q.4	(a)	OR Solve the initial value problem using Laplace transform:	07
		$y'' + 3y' + 2y = e^t$, $y(0) = 1$, $y'(0) = 0$.	07
	(b)	$y'' + 3y' + 2y = e^{t}, \ y(0) = 1, \ y'(0) = 0.$ (1) Find the Laplace transform of $f(t) = \begin{cases} 0 & ; & 0 < t < \pi \\ \sin t; & t \ge \pi \end{cases}$	04

1

(2) Evaluate $t * e^t$.

Q.5 (a) Using Fourier integral representation prove that

$$\int_{0}^{\infty} \frac{\cos \lambda x + \lambda \sin \lambda x}{1 + \lambda^{2}} d\lambda = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$$

$$07$$

(b) (1) Form the partial differential equation by eliminating the arbitrary functions from $f(x + y + z, x^2 + y^2 + z^2) = 0$.

(2) Solve the following partial differential equation (z - y)p + (x - z)q = y - x. 03

OR

Q.5 (a) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$u(x,0) = \begin{cases} x & ; \quad 0 \le x \le 50\\ 100 - x; \quad 50 \le x \le 100 \end{cases}$$

$$07$$

Find the temperature u(x,t) at any time.

(b) (1) Solve
$$\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y.$$
 04

(2) Solve
$$p - x^2 = q + y^2$$
. **03**

03

04