GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) • EXAMINATION – SUMMER 2015

Subject Code: 2130901Date:09/Subject Name: Circuits and NetworksTime:02:30 pm - 05:00 pmTotal MaInstructions:				
Q.1	(a)	Explain the terms: (i) Linear (ii) Bilateral (iii) Passive (iv) Reciprocal (v) Time invariant (vi) Oriented graph and (vii) Tree	07	
	(b)	(vi) Oriented graph and (vii) Tree.Justify: the current in an inductor and voltage across a capacitor cannot change instantaneously.	07	
Q.2	(a)	State and explain maximum power transfer theorem. Also derive the condition for maximum power transfer to the load for DC and AC circuit.	07	
	(b)	Using mesh analysis determine mesh current <i>i</i> and the value of <i>k</i> which causes $i=0$ if $V_1=10$ v and $V_2=2$ v for the network shown in figure 1. OR	07	
	(b)	Using nodal analysis find the value of k such that V_y is zero for the network shown in figure 2.	07	
Q.3	(a)	What is significance of initial condition? Write initial conditions for <i>R</i> , <i>L</i> and <i>C</i> at $t=0_+$ and at $t=\infty$.	07	
	(b)	For the network shown in figure 3 the switch k is closed at $t=0$, also it reaches a steady state with the switch k open. Find the current $i(t)$ for all time. OR	07	
Q.3	(a) (b)	What is time constant? Explain time constant in terms of RL and RC circuit. Determine $V_b(0_+)$ and $V_b(\infty)$ for the network shown in figure 4, which reaches to steady state with switch <i>k</i> open and at <i>t</i> =0, the switch <i>k</i> is closed.	07 07	
Q.4	(a) (b)	Explain concept of poles and zeros and their significance in network functions. Find the h parameters for the network shown in figure 5.	07 07	
		OR		
Q.4	(a) (b)	Find Laplace transform of $f_1(t) = \cos \omega t$ and $f_2(t) = e^{-at} \sin \omega t$. For the network shown in figure 6 determine voltage transfer gain $G_{12} = V_2/V_1$.	07 07	
Q.5	(a)	Derive relationship between incidence matrix (A), fundamental tie-set matrix (B_f) and fundamental cut-set matrix (Q_f) .	07	
	(b)	Find the Z parameters for the network shown in figure 7.	07	
		OR		
Q.5	(a)	Derive expression of h parameter in terms of Z and Y parameters.	07	
		$1/2$ with a weather shall also need to 4^{2} and 0 due to 4^{1} $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$		

(b) For the network shown in figure 8 draw the oriented graph. Also obtain incidence 07 matrix (*A*), fundamental tie-set matrix (*B_f*) and fundamental cut-set matrix (*Q_f*).

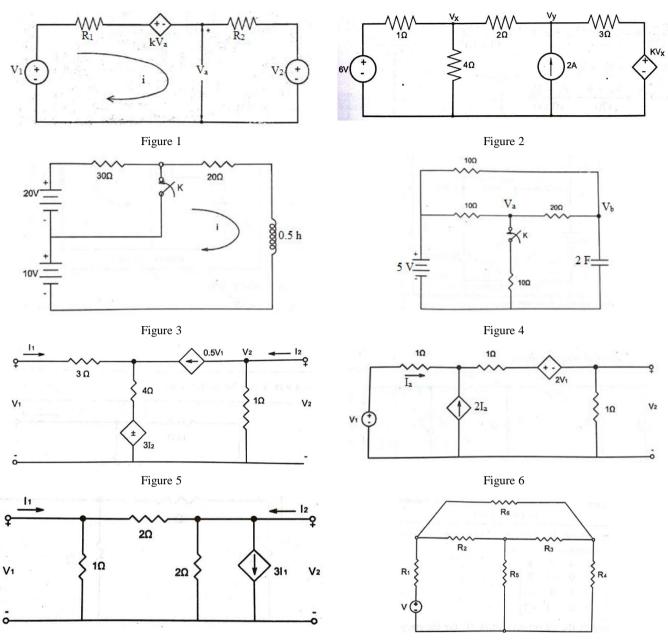


Figure 7

Figure 8