GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2015

Subject code: 2131905 Subject Name: Engineering Thermodynamics Time: 02.30pm-05.00pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Tables for properties of air and water, Steam tables, Psychometric chart is permitted.
- Q.1 (a) Define property. What is meant by intensive and extensive property? State the 07 differences between Microscopic approach and macroscopic approach.
 - (b) State the Steady Flow Energy Equation and explain how this equation can be 07 applied for (i) Nozzle, (ii) Boiler, and (iii) Steam Turbine.
- Q.2 (a) The mass flow rate of steam into a steam turbine is 1.5 Kg/s and heat loss from 07 the turbine is 8.5 KW. The steam is entering the turbine at the pressure of 2MPa, temperature 350°C, Velocity 50 m/s, elevation 6 m/s and is leaving the turbine at a pressure of 0.1 MPa, quality of 100%, velocity of 200 m/s, elevation of 3 m/s. Determine power output of turbine.
 - (b) State Kelvin-Plank Statement of Second Law of thermodynamics and show that 07 violation of Kelvin-Plank statement leading to violation of Clausius statement.

OR

- (b) A heat pump is used to heat the house in winter. A house requires 50 KJ/s heat
 07 for heating in winter which is delivered by heat pump from outside air. Work required to operate the heat pump is 8 KW. Calculate the Co-efficient of Performance of heat pump and heat abstracted from outside.
- Q.3 (a) Explain principle of increase of entropy for an isolated system.
 (b) What is irreversibility? State various types of irreversibilities and explain them.
 OR
- Q.3 (a) Explain the concept of decrease in available energy when heat is transferred 07 through a finite temperature difference with the aid of T-S diagram.
 - (b) 5 kg of water at 0°C is exposed to reservoir at 98°C. Calculate the change of entropy of water, reservoir and universe. Assume that specific heat of water is 4.187 KJ/Kg-K.
- Q.4 (a) Draw Rankine cycle on P-v, T-s and h-s diagrams and derive an expression for 07 its thermal efficiency with and without pump work.
 - (b) An engine working on Diesel cycle has cylinder bore of 190 mm and piston 07 stroke of 230 mm. The clearance volume is 290 cm³. The fuel injection takes place at constant pressure for 6% of the stroke. Determine the air standard cycle efficiency.

OR

Q.4 (a) Compare Otto, Diesel and Dual cycle for i) Same compression ratio and heat supplied ii) Same Max. Pressure and temperature. 07

Date: 04/06/2015

Total Marks: 70

- (b) Dry and saturated steam at pressure of 10.5 bar is supplied to a turbine and expanded isentropically to a pressure 0.075 bar. Calculate Thermal efficiency of Rankine cycle.
- Q.5 (a) What is regeneration in gas turbine plant? How it improves thermal efficiency of of simple open cycle Gas Turbine Plant. Explain it with the help of schematic diagram and T-S Diagram of the cycle.
 - (b) State the statements of Dalton's Law and Gibbs-Dalton Law. Explain in detail 07 Dalton's law of partial pressures.

OR

- Q.5 (a) How actual Brayton cycle differes from the theoretical cycle? Explain with the 07 help of T-S diagram.
 - (b) What is the Vander waal's equation of state? State its importance and derive it. 07
