GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (NEW) EXAMINATION – SUMMER 2015

Subject Name: Metallurgical Thermodynamics	
Time: 02.30pm-05.00pm Total Mar Instructions:	ks: 70
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1 (a) i) What is Gibb's phase rule? Explain the importance of phase rule. Derive Gibb's phase rule.	04
 ii) Explain the differences between a liquidus line and solidus line. 	03
(b) i) Explain Phase, component & Degrees of Freedom?ii) Explain how the liquidus line is obtained for any isomerphous system.	03 04
Q.2 (a) State & explain Ellingham diagram for various metal oxides? (b) i) Explain C_{1} (c) C_{2} (c) line in the Ellingham diagram?	07
 (b) i) Explain C- CO & C-CO₂ line in the Ellingham diagram? ii) Explain the advantages and limitations of Ellingham diagram. 	04 03
OR	
(b) i) State & Define 2nd law of Thermodynamics & its Significance.ii) Explain Quasi- static process.	04
	03
Q.3 (a) Define and explain the terms specific heat at constant pressure (Cp) and specific heat at constant volume (Cv) and derive the thermodynamics relationship between them.	07
 (b) What is the importance of equilibrium constant (K) & how this can be calculated from standard free energy changes? OR 	07
Q.3 (a) i) Prove that when HENRY'S law is obeyed by the solute, solvent obeys Raoult's law.	07
(b) i) Distinguish between ideal solutions and regular solutions.ii) Derive Gibb's- Duhem equations.	02
	05
Q.4 (a) Zinc melts at 420 °C and its standard entropy at 25 °C is 9.95 cal/deg/ mole. Calculate the standard entropy of Zinc at 750 °C. Heat of fusion of Zn at the melting point is $H_f = 1.74$ KCal/m. Given Data $\Delta S^0_{298} = 9.95$ Cal/ d/m.	07
$Cp < Zn > = 5.35 + 2.40* 10^{-3}T Cal/d/m.$	
 Cp{Zn} = 7.50 Cal / d/ m (b) i) Explain Von- Hoff equation. ii) State & Derive Enthalpy of a system. 	04 03

OR

		OR	
Q.4	(a)	i) The enthalpy changes for the following reactions are as follows $2B + 3H_2 + 3O_2 = 2H_3BO_3$. $\Delta H^0_{298} = -512.8$ Kcal. $B_2O_3 + 3H_2O(1) = 2H_3BO_3$. $\Delta H^0_{298} = -4.12$ Kcal. $H_2 + \frac{1}{2}O_2 = H_2O(1)$. $\Delta H^0_{298} = -68.73$ Kcal. Calculate the standard heat of formation of B_2O_3 in terms of per mole o B_2O_3 & per gm of B_2O_3 . Atomic wt of B & O are 10.82 & 16. ii)Calculate the work done in Reversible Adiabatic expansion.	04
			03
	(b)	State & Derive Maxwell's equation from combined statement of 1st & 2nd law.	07
Q.5	(a)	i) Calculate the equilibrium constant for the reaction. $ + (H_2) = + (H_2O)$ at 1023 K $ + \frac{1}{2} (O_2) = \Delta G^0_{298} = -58,450 + 23.55T$ cal. $(H_2) + \frac{1}{2} (O_2) = (H_2O) \Delta G^0_{298} = -58,900 + 13.1T$ cal. Could pure Ni sheet be annealed at 1023 K in an atmosphere of 95% H ₂ O & 5% H ₂ by volume with oxidation?	07
	(b)	i) The equation of the state of a gas is given by the expression (P + a/V^2). (V-b) = RT Prove that : ($\delta P / \delta V$) T * ($\delta V / \delta P$) T = 1	04
		ii) Explain Homogenous & Heterogeneous system. OR	03
Q.5			
-	(a)	What is blast f/c slag & its composition, Explain briefly the use of b/f Slag.	07
	(b)	Explain the following: (i) Slag basicity	04

(ii) Hess's Law	03
