GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION – SUMMER 2015

Subject Code: 2140001 Subject Name: MATHEMATICS-IV Time: 10:30am-1.30pm

Date:26/05/2015

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) State the necessary and sufficient condition for a function to be analytic and [05] prove the necessary condition.

(b) Attempt the following.

1. If α and β are the roots of equation $x^2 - 2x + 4 = 0$ then show that

$$\alpha^{n+1} + \beta^{n+1} = 2^{n+1} \cos \frac{n\pi}{3}.$$

- 2. Determine the analytic function, w = u + iv if $v = \log(x^2 + y^2) + x - 2y$.
- 3. Find and plot all the roots of $(8i)^{\frac{1}{3}}$.

Q.2 (a) Attempt the following.

- 1. Define bilinear transformation. Also find the bilinear transformation [05] which maps the points z = 1, i, -1 into the points w = i, 0, -i. Hence find the image of |z| < 1.
- 2. Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, Where C is the circle a) |z| = 2. b) $|z| = \frac{1}{2}$. [03]

(b) Attempt the following.

1. Find the image of infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation

 $w = \frac{1}{2}$. Also show the region graphically.

Define residue at simple pole and find the sum of residues of the

2. function $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2.

O

(b) Attempt the following.

1. State Cauchy's integral formula and hence evaluate $\oint_C \frac{e^{zz}}{(z+1)^4} dz$;

1

where C is the circle |z| = 2.

2. Expand $f(z) = -\frac{1}{(z-1)(z-2)}$ in the region a) |z| < 1 b) 1 < |z| < 2 c) $2 < |z| < \infty$

Q.3 (a) State and prove Cauchy's integral theorem.

[09]

[06]

[08]

(b) Attempt the following.

1. Write the two Laurent series expansion in powers of z that represent

the function $f(z) = \frac{1}{z^2(1-z)}$ in certain domains, and also specify

domains.

- 2. Use Bisection method to find the real root of the equation $x^3 4x 9 = 0$ correct to two decimal places.
- 3. Use secant method to find the root of $\cos x xe^x = 0$ correct to three decimal places.

OR

Q.3 (a) Using an indentation along a Branch cut show that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

(b) Attempt the following.

1. State Cauchy's residue theorem and evaluate $\int_C \frac{5z-2}{z(z-1)} dz$. Where C is

the circle |z| = 2.

- 2. Use power method to find the largest of Eigen values of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$. Perform four iterations only.
- 3. Find a real root of the equation $x^3 x 1 = 0$ correct to four decimal places, using Newton-Raphson method.
- Q.4 (a) Compute cosh(0.56) using Newton's forward difference formula and also [05] estimate the error for the following table.

I	X	0.5	0.6	0.7	0.8
	f(x)	1.127626	1.185465	1.255169	1.337435

- (b) Attempt the following.
 - 1. Solve the following linear system of equations by Gauss elimination method.

$$2x + y - z = 1$$

$$5x + 2y + 2z = -4$$

$$3x + y + z = 5$$

- 2. State Trapezoidal rule with n=10 and evaluate $\int_{0}^{1} e^{-x^{2}} dx$.
- 3. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Gauss Quadrature of thre points. Compare the result with analytic value.

OR

Q.4 (a) State Newton's divided difference interpolation formula and compute [05] f(9.2) from the following data.

x_{j}	8.0	9.0	9.5	11.0
$f(x)_{j}$	2.079442	2.197225	2.251292	2.397895

- Q.4 (b) Attempt the following.
 - 1. Solve the following linear system of equations by Gauss-Seidel

[09]

[09]

[09]

[05]

8x + y + z = 5x + 8y + z = 5x + y + 8z = 5

2. The speed, v meters per second, of a car, t seconds after it starts, is show in the following table.

					48						
v	0	3.60	10.08	18.90	21.60	18.54	10.26	4.50	4.5	5.4	9.0

Using Simpson's $\frac{1}{3}$ rule, find the distance travelled by the car in 2 minutes.

[09]

3. State Simpson's $\frac{3}{8}$ -rule and evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ taking $h = \frac{1}{6}$.

Q.5 (a) Explain the Euler's method to find Numerical solution of
$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$$
 [05]

(b) Attempt the following.

1. Use Runge–Kutta second order method to find the approximate value

of y(0.2) given that
$$\frac{dy}{dx} = x - y^2 \& y(0) = 1 \& h = 0.1$$

2. Determine y(0.1) for the Initial value problem $\frac{dy}{dx} = x^2 + y \left| y(0) = 1 \right|$

using Modified Euler's method.

3. Use Taylor's series method to obtain y(1.2) for the initial value

problem
$$\frac{dy}{dx} = x + y | y(1) = 0$$
 taking $h=01$.

OR

- Q.5 (a) Derive the Newton Raphson iterative scheme by drawing appropriate figure. [05]
 (b) Attempt the following. [09]
 - 1. Use Runge-Kutta fourth order method to find y(1.1), given that

$$\frac{dy}{dx} = x - y, y(1) = 1$$
 and $h = 0.05$.

Find the Lagrange interpolating polynomial from the following data

2.	x	0	1	4	5
	f(x)	1	3	24	39

3. Find an iterative formula for \sqrt{N} and hence find $\sqrt{7}$ correct to three decimal places.