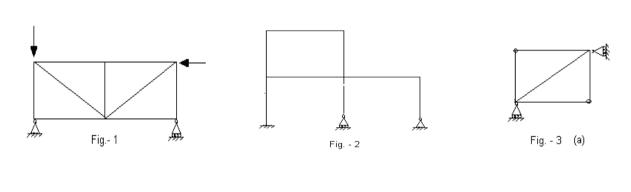
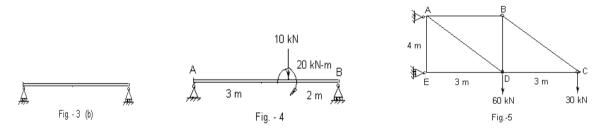
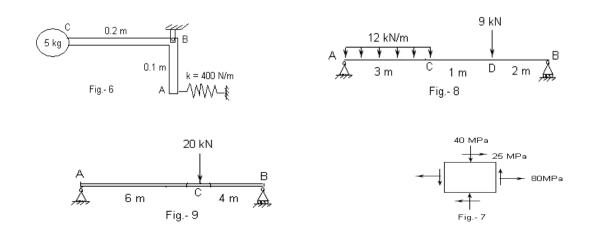
G . NT	T 1 . N
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015


Subject Code: 2140101 Subject Name: Aircraft Structure I Time: 10:30am-1.00pm Instructions:		Code: 2140101 Date:01/06/20	Date:01/06/2015 Total Marks: 70	
		0:30am-1.00pm Total Marks		
IIIst	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	The graphical integration of M/EI diagram between any two points on elastic curve on a beam will give	01	
	(b)	In a Conjugate Beam method the maximum deflection in a beam is take place at a point where	01	
	(c)	If the strain energy stored in bar due to sudden axial load is 200 kN-m, than the strain energy stored in a bar due to same magnitude of gradual axial load is	01	
	(d)	The magnitude of an effective length of a column having both the ends fixed and length "L" is	01	
	(e)	The number of independent coordinate required to represent the position of a body during vibration is referred as		
	(f) (g)	Identify the zero force members in a truss as shown in fig.1 Write the general equation of motion for a spring mass model of a SDOF vibration.	01 01	
	(h) (i)	For a determinate beam the value of S.I. is always Differentiate: simple truss, compound truss and complex truss by giving suitable sketch.	01 02	
Q.2	(a) (b)	State and prove "Maxwell Reciprocal Theorem". Define the terms: 1-) Static Indeterminacy 2-) Kinematic Indeterminacy. Find the S.I and K.I of a plane frame as shown in fig2. OR	07 07	
	(b)	State the criteria which are required to be satisfied in order to ensure the geometric stability of a structure. Also comment on geometric stability of a structure as shown in fig3 a-) and b-) by giving suitable justification.	07	
Q.3	(a)	Find the support reaction for a beam as shown in fig4 using principal of virtual work.	07	
	(b)	Find the internal forces in truss members for a plane truss as shown in fig 5 using Method of Tension Co-efficient. OR	07	
Q.3	(a)	The bent rigid rod ABC as shown in fig6 has negligible mass and supports a 5 kg collar at its end. The bar in hinged at B. Develop the equation of a vibratory motion and determine the natural time period of vibration.		
	(b)	The state of plane stress as shown in fig7 occurs at a critical point of a steel machine component for which the tensile yield strength is 250 MPa. Determine the factor of safety with respect to yielding using Maximum shear Stress Theory.	07	
Q.4	(a)	Derive moment – curvature relationship for deflection of a beam along with suitable assumptions.	07	
	(b)	Determine the position and value of maximum deflection in the beam as shown in fig8 using Macaulay's Method. Take EI is constant.	07	


- Q.4 (a) Determine the maximum deflection in a simply supported beam as shown in fig.-9 using Double Integration Method. Take $E = 200 \text{ kN/mm}^2$ and $I = 10^9 \text{ mm}^4$.
 - (b) Determine the maximum deflection in a simply supported beam as shown in fig.-9 using Moment area Method. Take $E = 200 \text{ kN/mm}^2$ and $I = 10^9 \text{ mm}^4$.
- Q.5 (a) Explain Euler's theory of long column along with suitable assumption.
 - (b) A cantilever beam of 6 m length and having rectangular cross section of 150 mm x 300 mm is subjected to a u.d.l. of 18 kN/m throughout the length of a beam. Find the total strain energy stored in a beam due to bending and shear. Take E = 200 kN/mm² and G = 80 kN/mm².


OR

- Q.5 (a) A mild steel tube 25 mm internal diameter, 32 mm external diameter, length 3 m is used as a strut, one end fixed, the other hinged. Calculate the Euler's buckling load. Take $E = 2 \times 10^5 \text{ N/mm}^2$.
 - (b) A mass of 25 kg is dropped on to a collar at the end of a vertical bar 2 m long and 25 mm in diameter, from a height of 100 mm. Calculate the maximum instantaneous stresses and extension produce in the section of bar. $E = 200 \text{ kN/mm}^2$.

07

07