GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV• EXAMINATION – SUMMER 2015

	•	t Code: 2140105	Date:26/05/2015					
Ti	•	t Name: Numerical Methods 10:30am-1.30pm	Total Marks: 70					
110	1	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 						
Q.1	(a)	Find the positive root of equation $x - \cos x = 0$ upto four decimal places by Bisection method.						
	(b)	Use stirling's formula to find $y(28)$ given that y(20) = 49225, y(25) = 48316, y(30) = 47236, y(35) = 45926 & y(40) = 44306.						
Q.2	(a)	Evaluate the integral $\int_{0}^{6} \frac{1}{1+x^2} dx$ by Trapezoidal and Simpson's 1/3 rule, 0						
		where h=1.						
	(b)	Solve the following system of linear equations by Gauss-seidel method 07 28x + 4y - z = 32, 2x + 17y + 4z = 35, x + 3y + 10z = 24.						
	(b)	OR Solve the following equations by Gauss-Jacobi's method 27x+6y-z=85, 6x+15y+2z=72, x+y+54z=110						
Q.3	(a)	Use the Langrange's formula to find the form of $f(x)$, given that 07						
-		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 792					
	(b)	Solve by Taylor's series method $y' = y - \frac{2x}{y}, y(0) = 1$ for $x = 0.1 \& x = -0.1$ 0						
Q.3	(a)	OR Using Newton's divided difference formula, find $f(8)$, where given that $f(1) = 3, f(3) = 31, f(6) = 223, f(10) = 1011, f(11) = 1343$.						
	(b)	Using Picard's method, solve $y' = x^2 - y, y(0) = 1$ for $x = 0.2$ 07						
04	(8)	Calculate $v(0,2)$ given that $v' = x + v \ v(0) = 1$ taking h=0	1 by Fourth order	07				

Q.4 (a) Calculate y(0.2), given that y' = x + y, y(0) = 1, taking h=0.1 by Fourth order 07 Rung-Kutta method. (b) By using Newton Raphson's method find the root of equation $x^4 - x - 10 = 0$ 07 which in near to x = 2, correct to the three decimal places.

OR

Q.4 (a) Using Newton's forward difference method find the approximate value of f(1.3) 07 from the following given data

nom the following given data								
x	1	2	3	4				
f(x)	1.1	4.2	9.3	16.4				
				1				

- (b) Using Newton Raphson's method to find the value of $\sqrt{15} \& (701)^{\frac{1}{3}}$
- p.d.e. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ given figure by Jacobi's method. Q.5 (a) Solve for the 07 1 1 23 210 0 0 0 21, 42 C C (tigune)
 - (b) Fit a polynomial of the second degree to the data points given in the following 07 table:

x	0	1.0	2.0				
У	1.0	6.0	17.0				
OR							

Q.5 (a)Given a table values for the function asx5001000200040006000y0.200.330.380.450.51

Fit a curve of the form $y = a + b\sqrt{x}$.

(b) Using False-position method, find the real root of $x \log_{10} x - 1.2 = 0$ correct to 07 four decimal places.

07

07