Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

	Sub	oject Code: 2140107 Date:30/05/2015	
	Sub	oject Name: Computational Fluid Dynamics I	
		ne:10:30am-1.00pm Total Marks: 70	
		ructions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a) (b)	What is CFD? Why it is required? List the areas where it is applicable? Explain three different approaches of fluid dynamics? State the advantages of CFD over Experimental fluid dynamics?	07 07
Q.2	(a)	Using Taylor's series expansions derive 1 st order forward difference, 1 st order backward difference and 2 nd order central difference.	07
	(b)	Derive Continuity equation for any two models of fluid flow. OR	07
	(b)	Define difference equation. Derive difference approximation for unsteady, one dimensional heat conduction equation with constant thermal diffusivity.	07
Q.3	(a) (b)	What is Descretization? Why it is required? List the basic descretization techniques. Using Taylor's series expansions derive 2 nd order central second difference and 2 nd order central difference for the mixed derivative.	07 07
		OR	
Q.3	(a)	Using Polynomial approach derive one sided 2 nd order accurate difference quotient at the boundary.	07
	(b)	State the advantages and disadvantages of Explicit and Implicit approach.	07
Q.4	(a) (b)	Explain FVM for one dimensional steady state diffusion problem. Draw the stencil diagram for following finite modules:	07 07
		 i. First order forward difference with respect to x ii. Second order central mixed difference with respect to x and y iii. Second order central difference with respect to x iv. First order forward difference with respect to y v. Second order central second difference with respect to x vi. First order rearward difference with respect to y vii. Second order central difference with respect to y 	
Q.4	(a)	What do you mean Error and stability? Define stable solution and stable equation.	07
	(b)	Derive an exact analytic solution for Prandtl – Meyer expansion wave.	07
Q.5	(a)	What is Grid Transformation? Why it is required? Explain the same with an example of an airfoil.	07
	(b)	What is Grid? What are the factors affecting the grid? Explain structured and	07
		Unstructured grid. OR	
Q.5	(a)	Write a short note on Mac-cormack technique.	07
~	(h)	Write a short note on Lax-wendroff technique	07
